METHODOLOGY: After collection and purification of caprine islets with Euro-Ficoll density gradients, islets were considered for viability and functionality procedures with DTZ (dithizone) staining and GSIST (glucose-stimulated insulin secretion test) subsequently. Batches of islet were selected for immunostaining and study through confocal microscopy and flow cytometry.
RESULTS: Histological sections of caprine pancreatic islets showed that α-cells were segregated at the periphery of β-cells. In caprine islets, α- and δ-cells remarkably were intermingled with β-cells in the mantle. Such cytoarchitecture was observed in all examined caprine pancreatic islets and was also reported for the islets of other ruminants. In both small and large caprine islets (< 150 and > 150 μm in diameter, respectively), the majority of β-cells were positioned at the core and α-cells were arranged at the mantle, while some single α-cells were also observed in the islet center. We evaluated the content of β-, α-, and δ-cells by confocal microscopy (n = 35, mean ± SD; 38.01 ± 9.50%, 30.33 ± 10.11%, 2.25 ± 1.10%, respectively) and flow cytometry (n = 9, mean ± SD; 37.52 ± 9.74%, 31.72 ± 4.92%, 2.70 ± 2.81%, respectively). Our findings indicate that the caprine islets are heterogeneous in cell composition. The difference could be attributed to species-specific interaction between endocrine cells and blood.
CONCLUSIONS: Comparative studies of islet architecture may lead to better understanding of islet structure and cell type population arrangement. These results suggest the use of caprine islets as an addition to the supply of islets for diabetes research.
AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation.
MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools.
RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds.
CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.
METHODS: Caprine islets were isolated and purified. Islets were handpicked and the diameter of the islets was recorded using light microscopy. Viablility of the islets was analyzed by confocal microscopy. Insulin secretion assay was carried out and analyzed by ELISA.
RESULTS: When tested at 48 h after isolation, these small islets were 29.3% more viable compared to the large-sized islets. Large islets showed a high ratio (P insulin level under low glucose induction (3.3 mm) and simultaneously 2.92-fold (2.95 ± 0.33 ng/IE) more insulin under high glucose condition (16.7 mm) in comparison to large islets at the same islet equivalents (P
METHODS: Adult WKY male rats were randomly distributed in nine groups: intact control, diabetic control, diabetic + 625 mg/kg, 1.25 g/kg UD, diabetic + 100 mg/kg Metformin, diabetic + swimming, diabetic + swimming 625 mg/kg, 1.25 g/kg UD, and diabetic +100 mg/kg Metformin + swimming. The hearts of the animals were punctured, and blood samples were collected for biochemical analysis. The entire pancreas was exposed for histologic examination. The effect of UD on insulin secretion by RIN-5F cells in 6.25 or 12.5 mM glucose dose was examined. Glucose uptake by cultured L6 myotubes was determined.
RESULTS: The serum glucose concentration decreased, the insulin resistance and insulin sensitivity significantly increased in treated groups. These changes were more pronounced in the group that received UD extract and swimming training. Regeneration and less beta cell damage of Langerhans islets were observed in the treated groups. UD treatment increased insulin secretion in the RIN-5F cells and glucose uptake in the L6 myotubes cells.
CONCLUSIONS: Swimming exercises accompanied by consuming UD aqueous extracts effectively improved diabetic parameters, repaired pancreatic tissues in streptozotocin-induced diabetics in vivo, and increased glucose uptake or insulin in UD-treated cells in vitro.
RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.
CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.