Displaying all 18 publications

Abstract:
Sort:
  1. Hani H, Nazariah Allaudin Z, Mohd-Lila MA, Sarsaifi K, Tengku-Ibrahim TA, Mazni Othman A
    Xenotransplantation, 2016 03;23(2):128-36.
    PMID: 26792070 DOI: 10.1111/xen.12220
    BACKGROUND: Pancreatic islets are composed of different hormone-secreting cell types. A finely balanced combination of endocrine cells in the islets regulates intraportal vein secretions and plasma nutrient levels. Every islet cell type is distinguished by its specific secretory granule pattern and hormone content, endocrine and cell signaling mechanisms, and neuronal interactions. The scarcity of pancreatic islet donors for patients with diabetes has caused a considerable interest in the field of islet xenotransplantation. Previous studies have shown that cell arrangement in the pancreatic islets of ruminants differs from that of other mammals; however, caprine islet cytoarchitecture has not yet been comprehensively described. This investigation aimed to characterize caprine islets in regard to better understanding of caprine islet structure and compare with previously reported species, by conducting a detailed analysis of islet architecture and composition using confocal microscopy and immunofluorescence staining for pancreatic islet hormones.

    METHODOLOGY: After collection and purification of caprine islets with Euro-Ficoll density gradients, islets were considered for viability and functionality procedures with DTZ (dithizone) staining and GSIST (glucose-stimulated insulin secretion test) subsequently. Batches of islet were selected for immunostaining and study through confocal microscopy and flow cytometry.

    RESULTS: Histological sections of caprine pancreatic islets showed that α-cells were segregated at the periphery of β-cells. In caprine islets, α- and δ-cells remarkably were intermingled with β-cells in the mantle. Such cytoarchitecture was observed in all examined caprine pancreatic islets and was also reported for the islets of other ruminants. In both small and large caprine islets (< 150 and > 150 μm in diameter, respectively), the majority of β-cells were positioned at the core and α-cells were arranged at the mantle, while some single α-cells were also observed in the islet center. We evaluated the content of β-, α-, and δ-cells by confocal microscopy (n = 35, mean ± SD; 38.01 ± 9.50%, 30.33 ± 10.11%, 2.25 ± 1.10%, respectively) and flow cytometry (n = 9, mean ± SD; 37.52 ± 9.74%, 31.72 ± 4.92%, 2.70 ± 2.81%, respectively). Our findings indicate that the caprine islets are heterogeneous in cell composition. The difference could be attributed to species-specific interaction between endocrine cells and blood.

    CONCLUSIONS: Comparative studies of islet architecture may lead to better understanding of islet structure and cell type population arrangement. These results suggest the use of caprine islets as an addition to the supply of islets for diabetes research.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  2. Chew YH, Shia YL, Lee CT, Majid FA, Chua LS, Sarmidi MR, et al.
    Mol Cell Endocrinol, 2009 Aug 13;307(1-2):57-67.
    PMID: 19524127 DOI: 10.1016/j.mce.2009.03.005
    A mathematical model to describe the oscillatory bursting activity of pancreatic beta-cells is combined with a model of glucose regulation system in this work to study the bursting pattern under regulated extracellular glucose stimulation. The bursting electrical activity in beta-cells is crucial for the release of insulin, which acts to regulate the blood glucose level. Different types of bursting pattern have been observed experimentally in glucose-stimulated islets both in vivo and in vitro, and the variations in these patterns have been linked to changes in glucose level. The combined model in this study enables us to have a deeper understanding on the regime change of bursting pattern when glucose level changes due to hormonal regulation, especially in the postprandial state. This is especially important as the oscillatory components of electrical activity play significant physiological roles in insulin secretion and some components have been found to be lost in type 2 diabetic patients.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism*
  3. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng IC, Priya SP, et al.
    Int J Mol Sci, 2014;15(12):23418-47.
    PMID: 25526563 DOI: 10.3390/ijms151223418
    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  4. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS
    J Diabetes Res, 2015;2015:908152.
    PMID: 26448950 DOI: 10.1155/2015/908152
    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  5. Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, et al.
    Antioxid Redox Signal, 2017 Nov 01;27(13):913-930.
    PMID: 28173719 DOI: 10.1089/ars.2016.6844
    AIMS: MicroRNAs (miRNAs), one type of noncoding RNA, modulate post-transcriptional gene expression in various pathogenic pathways in type 2 diabetes (T2D). Currently, little is known about how miRNAs influence disease pathogenesis by targeting cells at a distance. The purpose of this study was to investigate the role of exosomal miRNAs during T2D.

    RESULTS: We show that miR-15a is increased in the plasma of diabetic patients, correlating with disease severity. miR-15 plays an important role in insulin production in pancreatic β-cells. By culturing rat pancreatic β-cells (INS-1) cells in high-glucose media, we identified a source of increased miR-15a in the blood as exosomes secreted by pancreatic β-cells. We postulate that miR-15a, produced in pancreatic β-cells, can enter the bloodstream and contribute to retinal injury. miR-15a overexpression in Müller cells can be induced by exposing Müller cells to exosomes derived from INS-1 cells under high-glucose conditions and results in oxidative stress by targeting Akt3, which leads to apoptotic cell death. The in vivo relevance of these findings is supported by results from high-fat diet and pancreatic β-cell-specific miR-15a-/- mice.

    INNOVATION: This study highlights an important and underappreciated mechanism of remote cell-cell communication (exosomal transfer of miRNA) and its influence on the development of T2D complications.

    CONCLUSION: Our findings suggest that circulating miR-15a contributes to the pathogenesis of diabetes and supports the concept that miRNAs released by one cell type can travel through the circulation and play a role in disease progression via their transfer to different cell types, inducing oxidative stress and cell injury. Antioxid. Redox Signal. 27, 913-930.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism*
  6. Zhong L, Liu Q, Ting YS, Thien VY, Binti Kalong NS, Yang D, et al.
    Chem Biol Drug Des, 2018 12;92(6):1998-2008.
    PMID: 30043441 DOI: 10.1111/cbdd.13371
    Overexpression of thioredoxin-interacting protein (TXNIP) is associated with reduced insulin sensitivity and β-cell apoptosis. We have previously shown that W2476 inhibited high glucose-induced TXNIP expression at both mRNA and protein levels in INS-1E cells. In this study, we describe structural modification and optimization of W2476 leading to three more active derivatives, 8d, 8g, and 9h, capable of suppressing TXNIP expression in BG73 and INS-1E cells, increasing insulin production, and reducing high glucose-induced apoptosis in INS-1E cells.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  7. Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N
    Pharmacogenomics, 2014 Feb;15(2):235-49.
    PMID: 24444412 DOI: 10.2217/pgs.13.234
    In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  8. Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, et al.
    Stem Cell Res Ther, 2017 04 18;8(1):86.
    PMID: 28420418 DOI: 10.1186/s13287-017-0539-9
    BACKGROUND: Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency.

    RESULTS: In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10-12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2-4 weeks.

    CONCLUSION: These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  9. Kalra K, Chandrabose ST, Ramasamy TS, Kasim NHBA
    Curr Drug Targets, 2018;19(13):1463-1477.
    PMID: 29874998 DOI: 10.2174/1389450119666180605112917
    Diabetes mellitus is one of the leading causes of death worldwide. Loss and functional failure of pancreatic β-cells, the parenchyma cells in the islets of Langerhans, progress diabetes mellitus. The increasing incidence of this metabolic disorder necessitates efficient strategies to produce functional β-cells for treating diabetes mellitus. Human induced Pluripotent Stem Cells (hiPSC), hold potential for treating diabetes ownig to their self-renewal capacity and the ability to differentiate into β- cells. iPSC technology also provides unlimited starting material to generate differentiated cells for regenerative applications. Progress has also been made in establishing in-vitro culture protocols to yield definitive endoderm, pancreatic endoderm progenitor cells and β-cells via different reprogramming strategies and growth factor supplementation. However, these generated β-cells are still immature, lack functional characteristics and exhibit lower capability in reversing the diseases conditions. Current methods employed to generate mature and functional β-cells include; use of small and large molecules to enhance the reprogramming and differentiation efficiency, 3D culture systems to improve the functional properties and heterogeneity of differentiated cells. This review details recent advancements in the generation of mature β-cells by reprogramming stem cells into iPSCs that are further programmed to β-cells. It also provides deeper insight into current reprogramming protocols and their efficacy, focusing on the underlying mechanism of chemical-based approach to generate iPSCs. Furthermore, we have highlighted the recent differentiation strategies both in-vitro and in-vivo to date and the future prospects in the generation of mature β-cells.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  10. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism*
  11. Arya A, Looi CY, Cheah SC, Mustafa MR, Mohd MA
    J Ethnopharmacol, 2012 Oct 31;144(1):22-32.
    PMID: 22954496 DOI: 10.1016/j.jep.2012.08.014
    Seeds of Centratherum anthelminticum (Asteraceae) have been popularly used in Ayurvedic medicine to treat diabetes and skin disorders. Folk medicine from Rayalaseema (Andhra Pradesh, India) reported wide spread usage in diabetes.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  12. Abdollahi M, Zuki AB, Goh YM, Rezaeizadeh A, Noordin MM
    Histol Histopathol, 2011 01;26(1):13-21.
    PMID: 21117023 DOI: 10.14670/HH-26.13
    The aim of this research was to determine the effects of Momordica charantia (MC) fruit aqueous extract on pancreatic histopathological changes in neonatal STZ-induced type-II diabetic rats. Diabetes mellitus was induced in one day Sprague-Dawley neonatal rats using a single intrapretoneal injection of streptozotocin (STZ) (85 mg/kg body weight) and monitored for 12 weeks thereafter. The diabetic rats were separated into three groups, as follows: the diabetic control group (i.e. nSTZ), the diabetic group (i.e. nSTZ/M) - which was orally given 20 mg/kg of MC fruit extract, and the diabetic group (i.e. nSTZ/G) - that was treated with glibenclamide, 0.1 mg/kg for a period of four weeks. At the end of treatment, the animals were sacrificed and blood samples were collected from the saphenous vein to measure the blood glucose and serum insulin level. The pancreatic specimens were removed and processed for light microscopy, electron microscopy examination and immunohistochemical study. The results of this study showed that MC fruit aqueous extract reduced the blood glucose level as well as glibenclamide and increased the serum insulin level in the treated diabetic rats (P<0.05). The fruit extract of MC alleviated pancreatic damage and increased the number of β-cells in the diabetic treated rats (P<0.05). Our results suggest that oral feeding of MC fruit extract may have a significant role in the renewal of pancreatic β-cells in the nSTZ rats.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  13. Ataie-Jafari A, Loke SC, Rahmat AB, Larijani B, Abbasi F, Leow MK, et al.
    Clin Nutr, 2013 Dec;32(6):911-7.
    PMID: 23395257 DOI: 10.1016/j.clnu.2013.01.012
    This participant-blinded parallel-group randomized placebo-controlled study demonstrated that alfacalcidol (vitamin D analogue) preserves beta cell function in newly diagnosed type 1 diabetes (T1DM) in children.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  14. Sharma AK, Thanikachalam PV, Rajput SK
    Biomed Pharmacother, 2016 Feb;77:120-8.
    PMID: 26796275 DOI: 10.1016/j.biopha.2015.12.015
    Type-2 diabetes mellitus (T2DM) is the chronic metabolic disorder which provokes several pitfall signalling. Though, a series of anti-diabetic drugs are available in the market but T2DM is still a huge burden on the developed and developing countries. Numerous studies and survey predict the associated baleful circumstances in near future due to incessant increase in this insidious disorder. The novelty of recent explored anti-diabetic drugs including glitazone, glitazaar and gliflozines seems to be vanished due to their associated toxic side effects. Brown and Dryburgh (1970) isolated an intestinal amino acid known as gastric inhibitory peptide (GIP) which had insulinotropic activity. Subsequently in 1985, another incretin glucagon likes peptide 1 (GLP-1) having potent insulinotropic properties was discovered by Schmidt and his co-workers. On the basis of results' obtained by Phase III Harmony program FDA approved (14 April, 2014) new GLP-1 agonist 'Albiglutide (ALB)', in addition to exiting components Exenatide (Eli Lilly, 2005) and Liraglutide (Novo Nordisk, 2010). ALB stimulates the release of protein kinase A (PKA) via different mechanisms which ultimately leads to increase in intracellular Ca(2+) levels. This increased intracellular Ca(2+) releases insulin vesicle from β-cells. In-addition, ALB being resistant to degradation by dipeptidyl peptidase-4 (DPP-4) and has longer half life. DPP-4 can significantly degrade the level of GLP-1 agonist by hydrolysis. In spite of potent anti-hypergycemic activity, ALB has pleiotropic action of improving cardiovascular physiology. In light of these viewpoints we reveal the individual pharmacological profile of ALB and the critical analyse about its future perspective in present review.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  15. Arya A, Cheah SC, Looi CY, Taha H, Mustafa MR, Mohd MA
    Food Chem Toxicol, 2012 Nov;50(11):4209-20.
    PMID: 22939938 DOI: 10.1016/j.fct.2012.08.012
    This study aimed to ascertain the potential of Centratherum anthelminticum seeds methanolic fraction (CAMFs) for the management of type 2 diabetes and its associated complications. CAMFs was initially tested on β-TC6 cells for H(2)O(2)-induced nuclear factor-κB (NF-κB) translocation effects. The result displayed that CAMFs significantly inhibited NF-κB translocation from cytoplasm into the nucleus, dose-dependently. Furthermore, a 12-week sub-chronic CAMFs study was carried out on streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rat model to evaluate glycemia, essential biochemical parameters, lipid levels, oxidative stress markers, and pro-inflammatory cytokines level. Our study result showed that CAMFs reduced hyperglycemia by increasing serum insulin, C-peptide, total protein, and albumin levels, significantly. Whereas, elevated blood glucose, glycated hemoglobin, lipids and enzyme activities were restored to near normal. CAMFs confirmed antioxidant potential by elevating glutathione (GSH) and reducing malondialdehyde (MDA) levels in diabetic rats. Interestingly, CAMFs down-regulated elevated tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in the tissues and serum of the diabetic rats. We conclude that CAMFs exerted apparent antidiabetic effects and demonstrated as a valuable candidate nutraceutical for insulin-resistant type 2 diabetes and its associated complications such as dyslipidemia, oxidative stress, and inflammation.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  16. Mosavat M, Omar SZ, Jamalpour S, Tan PC
    J Diabetes Res, 2020;2020:9072492.
    PMID: 32090124 DOI: 10.1155/2020/9072492
    Background: Defects in incretin have been shown to be related to the pathogenesis of type 2 diabetes. Whether such a deficiency happens in gestational diabetes mellitus (GDM) remains to be confirmed. We assessed the association of fasting glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) with GDM. We also studied the longitudinal circulation of these peptides during pregnancy and afterwards.

    Methods: 53 women with GDM (30 managed with diet only (GDM-diet) and 23 treated with insulin (GDM-insulin)) and 43 pregnant women with normal glucose tolerance (NGDM) were studied, with GIP and GLP-1 levels measured at 24-28 weeks (E1), prior (E2) and after (E3) delivery, and postpuerperium (E4).

    Results: Basal GIP was shown to be low in GDM groups compared to NGDM in E1, and in E4 for GDM-diet. GLP-1 was low in GDM groups during pregnancy and afterwards. At E1, serum GIP and GLP-1 were inversely associated with GDM and participants with lower levels of GIP (<0.23 ng/mL) and GLP-1 (<0.38 ng/mL) had a 6 (95% CI 2.5-14.5)- and 7.6 (95% CI 3.0-19.1)-fold higher risk of developing GDM compared with the higher level, respectively. In the postpuerperium, when there is a drop in β-cell function, participants with previous GDM (pGDM) presented lower GLP-1 (in both GDM subgroups) and lower GIP in GDM-diet subgroup compared to controls.

    Conclusion: There is an independent, inverse association between fasting incretins and higher risk of GDM. Furthermore, lowered levels of these peptides may play an important role in the abnormality of glucose regulation following pregnancy.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  17. Yusoff NA, Lim V, Al-Hindi B, Abdul Razak KN, Widyawati T, Anggraini DR, et al.
    Nutrients, 2017 Aug 23;9(9).
    PMID: 28832548 DOI: 10.3390/nu9090925
    BACKGROUND: An aqueous extract (AE) of vinegar made from Nypa fruticans Wurmb. can improve postprandial glucose levels in normoglycaemic rats. The aim of this study was to evaluate its antihyperglycaemic activity further using in vivo and in vitro approaches.

    METHODS: AE was administered to streptozotocin (STZ)-induced diabetic rats twice daily at three doses (1000, 500, and 250 mg/kg b.w.) for 12 days p.o. Several biochemical analyses and a histological study of the pancreas and liver were performed, accompanied by a cell culture assay.

    RESULTS: As compared to diabetic control (DC), AE at the doses of 500 and 1000 mg/kg b.w. caused significant reduction (p < 0.05) of blood glucose, total cholesterol and triglycerides levels, with positive improvement of serum insulin levels. Interestingly, immunohistochemical staining of the pancreas suggested no β-cell regeneration, despite significant increase in insulin production. AE-treated groups, however, showed overall restoration of the hepatic histoarchitecture of STZ-induced liver damage, suggesting a possible hepatoprotective effect. The pancreatic effect of AE was further studied through RIN-5F cell culture, which revealed a positive stimulatory effect on insulin release at a basal glucose concentration (1.1 mM).

    CONCLUSION: Nypa fruticans Wurmb. vinegar's aqueous extract exerts its antihyperglycaemic activity, at least in part, through insulin stimulatory and hepatoprotective effects.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism
  18. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P insulin release in RIN-5F cells and improved glucose uptake in L6 myotubes. GLUT4 and AMPKα expressions increased in both doses of saffron (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p insulin, adiponectin, and leptin concentration levels in all groups (p > 0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Insulin-Secreting Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links