Methods: Lactase activity was measured with a 13CO2 lactose breath test using an infrared spectrometer. Each subject took 25 g of lactose naturally enriched in 13CO2 together with 250 mL of water after an overnight fast. Breath samples were collected at baseline and at 15-min intervals for 180 min. Subjects were asked to report gastrointestinal (GI) symptoms following ingestion of the lactose test meal.
Results: Of the 248 subjects tested, 216 (87.1%) were lactase deficient. We found no significant differences in the presentation of LD between gender and races. LD was found in 87.5% of males and 86.8% of females (P = 0.975) and in different races: Chinese (88.5%) versus Malay (83.1%) (P = 0.399), Indian (90.5%) versus Malay (P = 0.295), and Chinese versus Indian (P = 0.902). LI was diagnosed in only 49 (19.8%) subjects; 35 patients had diarrhea, while the remainder had at least two other GI symptoms after the lactose meal.
Conclusion: The prevalence of LD was high in all three major ethnic groups-Malays, Chinese, and Indians. Ironically, the prevalence of LI was low overall.
METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.
RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.
CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.