Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
    Matched MeSH terms: Luminescence
  2. Mawlud SQ
    PMID: 30359852 DOI: 10.1016/j.saa.2018.10.032
    Enhanced red and orange fluorescence emissions of Sm3+ Rare earth (RE) ions were observed in sodium‑zinc tellurite glasses embedded with silver and gold nanoparticles (NPs). The fine distribution of NPs in the glass matrix with an average diameter ~ 11.09 nm and ~3.86 nm for Ag and Au NPs respectively were confirmed by using transmission electron microscope (TEM). The embedding of Ag and Au NPs into the glass structure caused an increasing in the transition emission intensity of Sm3+ ions, which is ascribed to the progress of the presence of the localized surface Plasmon resonance (LSPR) indicating from the characteristic absorption peaks. The luminescence and absorption spectra have been discussed using a standard hypothesis Judd-Ofelt theory for a certain absorption transitions 6P3/2, 4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, 6F1/2 and emission transitions 6H5/2, H7/2, 6H9/2 and H11/2 under 409 nm excitation of the Sm3+ ions. The decay life time curve exhibited a non-exponential behavior of the studied glass samples and the results were compared with the similar reported glasses. An efficient red and orange fluorescence emission illustrate that the Sm3+-doped sodium‑zinc tellurite embedded with Ag and Au NPs are potential materials for the laser illumination.
    Matched MeSH terms: Luminescence
  3. Zhan SZ, Li JH, Zhang GH, Liu XW, Li M, Zheng J, et al.
    Chem Commun (Camb), 2019 Oct 03;55(80):11992-11995.
    PMID: 31498358 DOI: 10.1039/c9cc05236d
    A luminescent edge-interlocked heteroleptic metallocage based on Cu3(pyrazolate)3 was prepared through a ligand replacement reaction from a homoleptic metallocage and a new ligand. Its structure was confirmed by XRD and MALDI-TOF mass spectrometry. Theoretical calculations revealed the new ligand was evidently responsible for the bathochromic shift of the optimal excitation. This work provides a heteroleptic strategy to regulate the interlocking fashion and photophysical mechanism of metallocages based on Cu3(pyrazolate)3.
    Matched MeSH terms: Luminescence
  4. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A
    PMID: 26474244 DOI: 10.1016/j.saa.2015.09.021
    The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
    Matched MeSH terms: Luminescence
  5. Lokman Mohd Noh, Zulkifli Ismail, Farida Jamal, Rahim Md Noah, Sabiha Pit, Hina Isahak, et al.
    MyJurnal
    Recurrent boils are troublesome enough to children and their parents to be finally referred to the paediatricians. This study attempts to provide local data on epidemiology, pattern of infections of offending organism especially Staphylococcus aureus and underlying immunological abnormality. This condition does not appear to be related to socio economic status nor is staphylococcal nasal cariage a direct contributing factor. Defect in neutrophil function especially the respiratory burst assayed via chemiluminescence response to Staphylococcus aureus is closely associated with this condition. It is hoped that this data would be a further impetus for further research into this exciting field.
    Matched MeSH terms: Luminescence
  6. Norhayati Abdullah, Wong, Jeannie Hsiu Ding, Ng, Kwan Hoong, Ung, Ngie Min
    MyJurnal
    The assessment of surface dose is essential in radiotherapy to avoid deterministic effect or to
    reduce the severity of side effects from radiation treatment. In this study, the surface dose for breast
    cancer radiotherapy was measured using two types of dosimeter; Thermoluminescent Dosimeter
    (TLD) and Optically Stimulated Luminescent Dosimeter (OSLD). The study was performed on the
    left breast of female Alderson Radiation Therapy (ART) phantom. The treatment planning was
    carried out on the ART phantom to determine the homogeneity of dose distribution within the target
    organ is complied with the tolerance limits of 95% to 107% as recommended by the International
    Commission on Radiation Units and Measurements (ICRU)’s Report No. 50. From the treatment
    planning result, the phantom then was irradiated with 267 cGy dose per fraction for two beam
    fields; medial tangential and lateral tangential fields using a 6 MV photon beam produced from
    three-dimensional (3D) conformal radiotherapy. Result shows that the OSLD provides 25.7% and
    23.5% higher surface dose compared to TLD for medial tangential and lateral tangential fields,
    respectively. This condition may be due to higher effective point of measurement and angular
    dependence of the OSLD compared to TLD. As a conclusion, suitable dosimeter should be selected
    to ensure accurate estimation of surface dose could be made thus reduction of skin reaction to
    patient could be achieved.
    Matched MeSH terms: Optically Stimulated Luminescence Dosimetry
  7. Wong JHD, Bakhsh M, Cheah YY, Jong WL, Khor JS, Ng KH
    Radiat Prot Dosimetry, 2019 Dec 31;187(4):451-460.
    PMID: 31650160 DOI: 10.1093/rpd/ncz186
    This study characterises and evaluates an Al2O3:C-based optically stimulated luminescent dosemeter (OSLD) system, commercially known as the nanoDot™ dosemeter and the InLight® microStar reader, for personal and in vivo dose measurements in diagnostic radiology. The system characteristics, such as dose linearity, reader accuracy, reproducibility, batch homogeneity, energy dependence and signal stability, were explored. The suitability of the nanoDot™ dosemeters was evaluated by measuring the depth dose curve, in vivo dose measurement and image perturbation. The nanoDot™ dosemeters were observed to produce a linear dose with ±2.8% coefficient variation. Significant batch inhomogeneity (8.3%) was observed. A slight energy dependence (±6.1%) was observed between 60 and 140 kVp. The InLight® microStar reader demonstrated good accuracy and a reproducibility of ±2%. The depth dose curve measured using nanoDot™ dosemeters showed slightly lower responses than Monte Carlo simulation results. The total uncertainty for a single dose measurement using this system was 11%, but it could be reduced to 9.2% when energy dependence correction was applied.
    Matched MeSH terms: Optically Stimulated Luminescence Dosimetry/instrumentation*; Optically Stimulated Luminescence Dosimetry/methods*
  8. Ram S, Siar CH
    Int J Oral Maxillofac Surg, 2005 Jul;34(5):521-7.
    PMID: 16053872
    Chemiluminescence was evaluated as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions (PMELs) by comparing it against 1% tolonium chloride mouth rinse. Forty-six clinically identified lesions [14 primary squamous cell carcinoma (SCC), 26 PMELs and 6 benign lesions] and five cases of normal oral mucosa from 40 subjects (inclusive of 10 previously treated SCC cases) were examined with a commercial chemiluminescent kit (Vizilite) and tolonium chloride. Biopsy and histological verification of 31 lesions disclosed 14 SCC (45.2%), 10 epithelial dysplasias (32.3%), 5 lichen planus (16.1%) and 2 benign lesions (6.4%). For the remaining 15 lesions, a biopsy was not performed owing to patient's lack of consent or ill-health. The five cases of normal oral mucosa which tested negative for both tools were also not biopsied for ethical reasons. Sensitivity for Vizilite and tolonium chloride was 100% and 70.3%, respectively; and specificity was 14.2% for Vizilite and 25% for tolonium chloride. Their accuracy was 80.6% and 64.5%, respectively. Current findings suggest that chemiluminescence is a more reliable diagnostic tool than tolonium chloride in the detection of oral cancer and PMELs, and for follow-up of patients treated for the same.
    Matched MeSH terms: Luminescence*
  9. Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, et al.
    Front Chem, 2020;8:685.
    PMID: 32903703 DOI: 10.3389/fchem.2020.00685
    We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5


    D


    0







    7


    F1) and -0.0059 at 613 nm (5


    D


    0







    7


    F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5


    D


    4







    7


    F6), +0.0078 at 540 nm (5


    D


    4







    7


    F5), and -0.0018 at 552 nm (5


    D


    4







    7


    F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
    Matched MeSH terms: Luminescence
  10. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 08 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
    Matched MeSH terms: Luminescence
  11. Noah, R.M., Yusuff, Z., Jais, M.R., Noh, L.M.
    MyJurnal
    Chemiluminescence assay was used to assess the respiratory burst activities of polymorpho-nuclear leukocytes from paediatric patients reported to manifest with several episodes of recurrent bacterial infections. From this group of patients evaluated, only 10 cases of severe recurrent bacterial abscess exhibited more than 80% depression in the phagocytic chemilumi-nescence responses. The assay, being a sensitive method, was able to provide further useful laboratory investigation in diagnosing 4 patients with chronic granulomatous disease.
    Matched MeSH terms: Luminescence
  12. Ros Anita Ahmad Ramli, Ahmad Zainuri Mohd Dzomir, Zainon Othman, Wan Saffiey Wan Abdullah, Muhamad Samudi Yasir
    MyJurnal
    The exposure of food to ionizing radiation is being progressively used in many countries to
    inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free
    consumer choice, irradiated food will be labeled. The availability of a reliable method to detect
    irradiated food is important to enforce legal controls on labeling requirements, ensure proper
    distribution and increase consumer confidence. This paper reports on the preliminary application
    of photostimulated luminescence technique (PSL) as a potential method to detect irradiated food
    and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this
    study will be beneficial and relevant for application of food irradiation towards improving food
    safety and security in Malaysia.
    Matched MeSH terms: Luminescence
  13. Rejab M, Wong JHD, Jamalludin Z, Jong WL, Malik RA, Wan Ishak WZ, et al.
    Australas Phys Eng Sci Med, 2018 Jun;41(2):475-485.
    PMID: 29756166 DOI: 10.1007/s13246-018-0647-6
    This study investigates the characteristics and application of the optically-stimulated luminescence dosimeter (OSLD) in cobalt-60 high dose rate (HDR) brachytherapy, and compares the results with the dosage produced by the treatment planning system (TPS). The OSLD characteristics comprised linearity, reproducibility, angular dependence, depth dependence, signal depletion, bleaching rate and cumulative dose measurement. A phantom verification exercise was also conducted using the Farmer ionisation chamber and in vivo diodes. The OSLD signal indicated a supralinear response (R2 = 0.9998). It exhibited a depth-independent trend after a steep dose gradient region. The signal depletion per readout was negligible (0.02%), with expected deviation for angular dependence due to off-axis sensitive volume, ranging from 1 to 16%. The residual signal of the OSLDs after 1 day bleached was within 1.5%. The accumulated and bleached OSLD signals had a standard deviation of ± 0.78 and ± 0.18 Gy, respectively. The TPS was found to underestimate the measured doses with deviations of 5% in OSLD, 17% in the Farmer ionisation chamber, and 7 and 8% for bladder and rectal diode probes. Discrepancies can be due to the positional uncertainty in the high-dose gradient. This demonstrates a slight displacement of the organ at risk near the steep dose gradient region will result in a large dose uncertainty. This justifies the importance of in vivo measurements in cobalt-60 HDR brachytherapy.
    Matched MeSH terms: Optically Stimulated Luminescence Dosimetry
  14. Jantan I, Bukhari SN, Lajis NH, Abas F, Wai LK, Jasamai M
    J Pharm Pharmacol, 2012 Mar;64(3):404-12.
    PMID: 22309272 DOI: 10.1111/j.2042-7158.2011.01423.x
    A series of 43 curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on the chemiluminescence and chemotactic activity of phagocytes in vitro.
    Matched MeSH terms: Luminescence
  15. Thandavan TM, Gani SM, San Wong C, Md Nor R
    PLoS One, 2015;10(3):e0121756.
    PMID: 25756598 DOI: 10.1371/journal.pone.0121756
    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
    Matched MeSH terms: Luminescence*
  16. Hooi Yeen Yap, Jack Bee Chook, Sin Yeang Teow
    MyJurnal
    ntroduction: Nasopharyngeal carcinoma (NPC) is a prevalent cancer among human population in Southern China, Hong Kong and Southeast Asia. In Malaysia, NPC is the fourth most common cancer in both sexes, predominantly in the Chinese. Epstein-Barr virus (EBV) infection is known to be highly associated with NPC. Fibroblast growth factor receptor-4 (FGFR4) is part of the family of tyrosine kinase receptors that regulate cell survival, differentiation and pro-liferation. The binding of FGFR4 ligands such as fibroblasts growth factors (FGFs) has been shown to activate various oncogenic signalling pathway including MAPK, Ras and PI3K-Akt pathways. In the past, FGFR4 has been shown to promote tumorigenesis and tumour progression in various cancers such as liver, colon, breast and pancreatic and gastric cancers. However, its role in NPC establishment and pathogenesis is under-explored. This study aimed to evaluate the FGFR4 expression in NPC using various cell lines and its potential as a therapeutic target for NPC treat-ment by gene silencing. Methods: The basal FGFR4 level of NPC (EBV-positive: C666-1 and EBV-negative: HONE1 and HK1) and nasopharyngeal epithelial (NPE) normal (NP69 and NP460) cell lines was determined by western blot analysis and RT-qPCR. FGFR4 level at different time points (0, 24, 48, and 72 hours) in HONE1 and C666-1 cell lines were determined by western blot analysis. Luminescence-based assay was performed to determine the cell prolifer-ation of NPC cells in correlation with the FGFR4 expression. NPC cells were then treated with the optimised FGFR4 siRNA or FGFR inhibitor, BLU-9931 and the silencing/ inhibition of FGFR4 expression was confirmed by western blot analysis. The effect of FGFR4 inhibition on the cell proliferation and aggressiveness of NPC cells was then investigat-ed through wound healing assay and invasion marker analysis. Results: Out of the five tested cell lines, HONE1 and C666-1 highly expressed FGFR4, NP69 showed very low expression while HK1 and NP460 did not express FGFR4. In the time-point study, the FGFR4 level of HONE1 and C666-1 peaked at 24-48 hours which is the exponential phase of cells. Following that, the FGFR4 level decreased corresponding to the decreased cell growth rate due to the nutrient deprivation. siRNA experiments showed that 6.25nM of four siRNAs (5, 6, 9 and 10) could effectively target and silence the FGFR4 expression of HONE1, but not in C666-1 even up to 250nM was tested. When BLU-9931 was used, only modest inhibition was observed in both cells at 3uM. Compared to the untreated control, FGFR4-inhibited HONE1 exhibited decreased cell proliferation rate. Cell migration and invasion capabilities of HONE1 were also significantly reduced following the FGFR4 silencing, suggesting the potential of utilising FGFR4 as the therapeutic target. Conclusion: FGFR4 is highly expressed in C666-1 (EBV-positive) and HONE1 (initially EBV-positive, but lost EBV genome in subsequent in vitro passage) NPC cells, but not in EBV-negative HK1 NPC cell and normal NPE cells. FGFR4 gene silencing effectively inhibited the cell proliferation, migration and invasive potentials of NPC cell line. These findings highlight the therapeutic value of targeting FGFR4 for NPC treatment. Further investigations are war-ranted to reveal the molecular mechanism and the possible role of EBV in regulating FGFR4 pathway.
    Matched MeSH terms: Luminescence
  17. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, et al.
    Int J Nanomedicine, 2016;11:413-28.
    PMID: 26858524 DOI: 10.2147/IJN.S90198
    In this study, we synthesized a multifunctional nanoparticulate system with specific targeting, imaging, and drug delivering functionalities by following a three-step protocol that operates at room temperature and solely in aqueous media. The synthesis involves the encapsulation of luminescent Mn:ZnS quantum dots (QDs) with chitosan not only as a stabilizer in biological environment, but also to further provide active binding sites for the conjugation of other biomolecules. Folic acid was incorporated as targeting agent for the specific targeting of the nanocarrier toward the cells overexpressing folate receptors. Thus, the formed composite emits orange-red fluorescence around 600 nm and investigated to the highest intensity at Mn(2+) doping concentration of 15 at.% and relatively more stable at low acidic and low alkaline pH levels. The structural characteristics and optical properties were thoroughly analyzed by using Fourier transform infrared, X-ray diffraction, dynamic light scattering, ultraviolet-visible, and fluorescence spectroscopy. Further characterization was conducted using thermogravimetric analysis, high-resolution transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy. The cell viability and proliferation studies by means of MTT assay have demonstrated that the as-synthesized composites do not exhibit any toxicity toward the human breast cell line MCF-10 (noncancer) and the breast cancer cell lines (MCF-7 and MDA-MB-231) up to a 500 µg/mL concentration. The cellular uptake of the nanocomposites was assayed by confocal laser scanning microscope by taking advantage of the conjugated Mn:ZnS QDs as fluorescence makers. The result showed that the functionalization of the chitosan-encapsulated QDs with folic acid enhanced the internalization and binding affinity of the nanocarrier toward folate receptor-overexpressed cells. Therefore, we hypothesized that due to the nontoxic nature of the composite, the as-synthesized nanoparticulate system can be used as a promising candidate for theranostic applications, especially for a simultaneous targeted drug delivery and cellular imaging.
    Matched MeSH terms: Luminescence
  18. Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ
    Nanoscale, 2019 Jan 23;11(4):1475-1504.
    PMID: 30620019 DOI: 10.1039/c8nr08738e
    Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
    Matched MeSH terms: Luminescence
  19. Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS
    Molecules, 2019 Mar 19;24(6).
    PMID: 30893817 DOI: 10.3390/molecules24061079
    G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
    Matched MeSH terms: Luminescence
  20. Vongsak B, Gritsanapan W, Wongkrajang Y, Jantan I
    Nat Prod Commun, 2013 Nov;8(11):1559-61.
    PMID: 24427941
    The ethanol extract of Moringa oleifera Lam. leaves and its major constituents, crypto-chlorogenic acid, quercetin 3-O-glucoside and kaempferol 3-O-glucoside, were investigated on the respiratory burst of human whole blood and isolated human polymorphonuclear leukocytes (PMNs) using a luminol-based chemiluminescence assay. The chemotactic migration of PMNs was also investigated using the Boyden chamber technique. The ethanol extract demonstrated inhibitory activities on the oxidative burst and the chemotactic migration of PMNs. Quercetin 3-O-glucoside, crypto-chlorogenic acid, and kaempferol 3-O-glucoside, isolated from the extract, expressed relatively strong inhibitory activity on the oxidative burst of PMNs with IC50 values of 4.1, 6.7 and 7.0 microM, respectively, comparable with that of aspirin. They also demonstrated strong inhibition of chemotatic migration of PMNs with IC50 values of 9.5, 15.9 and 18.2 microM, respectively. The results suggest that M. oleifera leaves could modulate the immune response of human phagocytes, linking to its ethnopharmacological use as an anti-inflammatory agent. The immunomodulating activity of the plant was mainly due to its major components.
    Matched MeSH terms: Luminescence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links