Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Thriumani R, Zakaria A, Hashim YZH, Jeffree AI, Helmy KM, Kamarudin LM, et al.
    BMC Cancer, 2018 04 02;18(1):362.
    PMID: 29609557 DOI: 10.1186/s12885-018-4235-7
    BACKGROUND: Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells.

    METHOD: The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium.

    RESULTS: This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells.

    CONCLUSION: The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

    Matched MeSH terms: Lung Neoplasms/metabolism*
  2. Moghadamtousi SZ, Kadir HA, Paydar M, Rouhollahi E, Karimian H
    PMID: 25127718 DOI: 10.1186/1472-6882-14-299
    BACKGROUND: Annona muricata leaves have been reported to have antiproliferative effects against various cancer cell lines. However, the detailed mechanism has yet to be defined. The current study was designed to evaluate the molecular mechanisms of A. muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells.

    METHODS: The effect of AMEAE on cell proliferation of different cell lines was analyzed by MTT assay. High content screening (HCS) was applied to investigate the suppression of NF-κB translocation, cell membrane permeability, mitochondrial membrane potential (MMP) and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. The western blot analysis also carried out to determine the protein expression of cleaved caspase-3 and -9. Flow cytometry analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. Quantitative PCR analysis was performed to measure the gene expression of Bax and Bcl-2 proteins.

    RESULTS: Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards lung cancer cells, A549, with an IC50 value of 5.09 ± 0.41 μg/mL after 72 h of treatment. Significant LDH leakage and phosphatidylserine externalization were observed in AMEAE treated cells by fluorescence analysis. Treatment of A549 cells with AMEAE significantly elevated ROS formation, followed by attenuation of MMP via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The incubation of A549 cells with superoxide dismutase and catalase significantly attenuated the cytotoxicity caused by AMEAE, indicating that intracellular ROS plays a pivotal role in cell death. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G0/G1 phase. Moreover, AMEAE suppressed the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSIONS: Our data showed for the first time that the ethyl acetate extract of Annona muricata inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway with the involvement of the NF-kB signalling pathway.

    Matched MeSH terms: Lung Neoplasms/metabolism*
  3. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
    Matched MeSH terms: Lung Neoplasms/metabolism
  4. Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK
    J Colloid Interface Sci, 2016 Nov 01;481:107-16.
    PMID: 27459173 DOI: 10.1016/j.jcis.2016.07.020
    Gemcitabine (GmcH) is an effective anti-cancer agent used in the chemotherapy of lung cancer. However, the clinical applications of GmcH has been impeded primarily due to its low blood residence time, unfavorable pharmacokinetic and pharmacodynamic (PK/PD) profile, and poor penetration in the complex environment of lung cancer cells. Thus, the present study aims to formulate GmcH loaded mannosylated solid lipid nanoparticles (GmcH-SLNs) for improving its drug uptake into the lung cancer cells. GmcH-SLNs were prepared by emulsification and solvent evaporation process, and surface modification was done with mannose using ring opening technique. The cellular toxicity and cell uptake studies were performed in A549 lung adenocarcinoma cell line. The developed nanoformulation appears to be proficient in targeted delivery of GmcH with improved therapeutic effectiveness and enhanced safety.
    Matched MeSH terms: Lung Neoplasms/metabolism*
  5. Mohamad NE, Abu N, Yeap SK, Alitheen NB
    Integr Cancer Ther, 2019 11 23;18:1534735419880258.
    PMID: 31752555 DOI: 10.1177/1534735419880258
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
    Matched MeSH terms: Lung Neoplasms/metabolism
  6. Bera H, Abbasi YF, Gajbhiye V, Liew KF, Kumar P, Tambe P, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 May;110:110628.
    PMID: 32204068 DOI: 10.1016/j.msec.2020.110628
    The current study dealt with the synthesis and characterization of carboxymethyl fenugreek galactomannang-g-poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide)-bentonite [CFG-g-P(NIPA-co-MBA)-BEN] based nanocomposites (NCs) as erlotinib (ERL)-delivery devices for lung cancer cells to suppress excessive cell proliferation. The blank NCs exhibited outstanding biodegradability and pH/temperature-dependent swelling profiles, which were significantly influenced by their BEN contents (0-20%). The molar mass (M¯c) between the crosslinks of these NCs was declined with temperature. The composite architecture of these scaffolds was confirmed by XRD, FTIR, TGA, DSC and SEM analyses. The corresponding ERL-loaded matrices (F-1-F-3) portrayed outstanding drug encapsulation efficiency (DEE, 93-100%) with zeta potential between -8 and -16 mV and diameter between 615 and 1258 nm. These formulations demonstrated sustained ERL elution profiles (Q8h, 62-98%) with an initial burst release of drug. The drug dissolution pattern of the optimized matrices (F-3) obeyed first-order kinetic model and was driven by Fickian diffusion. The mucin adsorption behavior of F-3 was best fitted to Freudlich isotherms. The ERL-loaded formulation suppressed A549 cell proliferation and promoted apoptosis to a greater extent than the pristine drug, as detected by cellular uptake analysis, MTT cytotoxicity test and AO/EB staining assay.
    Matched MeSH terms: Lung Neoplasms/metabolism
  7. Shiran MS, Tan GC, Arunachalam N, Sabariah AR, Pathmanathan R
    Malays J Pathol, 2006 Dec;28(2):113-6.
    PMID: 18376801
    We report a case of clear cell "sugar" tumour of the lung (CCTL) occurring in a 26-year-old lady. The patient was asymptomatic and the lesion was picked up in the course of a pre-employment medical examination. A well-defined 5 cm nodule in the right lower lobe was detected on routine chest X-Ray. Microscopical examination of the coin lesion showed clear cells containing abundant diastase-sensitive intracytoplasmic glycogen, as demohstrated with periodic acid-Schiff stains. Tumour immunoreactivity for HMB-45 and non-reactivity for cytokeratin support the histological diagnosis. To our knowledge, this is the first reported case of CCTL in Malaysia.
    Matched MeSH terms: Lung Neoplasms/metabolism
  8. Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S
    Mater Sci Eng C Mater Biol Appl, 2015 Mar;48:384-90.
    PMID: 25579938 DOI: 10.1016/j.msec.2014.12.039
    Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7wt.%) indicated that the minimum diameter of nanofibers was found to be 85nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH5.3 and 7.4 indicated strong pH dependence. The hydrogen bonding interaction between GO and DOX could be unstable under acidic conditions which resulted in faster drug release rate in pH5.3. The cell viability results indicated that DOX loaded PEO/CS/GO/DOX nanofibrous scaffold could be used as an alternative source of DOX compared with free DOX to avoid the side effects of free DOX. Thus, the prepared nanofibrous scaffold offers as a novel formulation for treatment of lung cancer.
    Matched MeSH terms: Lung Neoplasms/metabolism
  9. Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, et al.
    Oncol Rep, 2016 Jan;35(1):13-25.
    PMID: 26531053 DOI: 10.3892/or.2015.4371
    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
    Matched MeSH terms: Lung Neoplasms/metabolism*
  10. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Lung Neoplasms/metabolism
  11. Liam CK, Pang YK, Leow CH
    Respirology, 2006 May;11(3):287-91.
    PMID: 16635086
    To describe the efficacy of monotherapy with the epidermal growth factor receptor-tyrosine kinase inhibitor, gefitinib in patients with locally advanced and metastatic primary lung adenocarcinoma.
    Matched MeSH terms: Lung Neoplasms/metabolism
  12. Muthoosamy K, Abubakar IB, Bai RG, Loh HS, Manickam S
    Sci Rep, 2016 Sep 06;6:32808.
    PMID: 27597657 DOI: 10.1038/srep32808
    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI lung, A549 (IC50 = 13.24 μg/ml) and breast, MDA-MB-231 (IC50 = 1.450 μg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific.
    Matched MeSH terms: Lung Neoplasms/metabolism
  13. Balasubramaniam VR, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S
    PLoS One, 2013;8(9):e72429.
    PMID: 24073193 DOI: 10.1371/journal.pone.0072429
    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
    Matched MeSH terms: Lung Neoplasms/metabolism*
  14. Surien O, Ghazali AR, Masre SF
    Histol Histopathol, 2020 Oct;35(10):1159-1170.
    PMID: 32893871 DOI: 10.14670/HH-18-247
    BACKGROUND: Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.

    METHODS: A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.

    RESULTS: All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.

    CONCLUSIONS: The underlying molecular mechanisms of PS in lung SCC should be further studied.

    Matched MeSH terms: Lung Neoplasms/metabolism
  15. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Lung Neoplasms/metabolism
  16. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
    Matched MeSH terms: Lung Neoplasms/metabolism*
  17. Lee SH, Jaganath IB, Manikam R, Sekaran SD
    BMC Complement Altern Med, 2013 Oct 20;13:271.
    PMID: 24138815 DOI: 10.1186/1472-6882-13-271
    BACKGROUND: Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities.

    METHODS: Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus.

    RESULTS: Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity.

    CONCLUSIONS: Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

    Matched MeSH terms: Lung Neoplasms/metabolism*
  18. Liam CK, Mallawathantri S, Fong KM
    Respirology, 2020 09;25(9):933-943.
    PMID: 32335992 DOI: 10.1111/resp.13823
    Molecular biomarker testing of advanced-stage NSCLC is now considered standard of care and part of the diagnostic algorithm to identify subsets of patients for molecular-targeted treatment. Tumour tissue biopsy is essential for an accurate initial diagnosis, determination of the histological subtype and for molecular testing. With the increasing use of small biopsies and cytological specimens for diagnosis and the need to identify an increasing number of predictive biomarkers, proper management of the limited amount of sampling materials available is important. Many patients with advanced NSCLC do not have enough tissue for molecular testing and/or do not have a biopsy-amenable lesion and/or do not want to go through a repeat biopsy given the potential risks. Molecular testing can be difficult or impossible if the sparse material from very small biopsy specimens has already been exhausted for routine diagnostic purposes. A limited diagnostic workup is recommended to preserve sufficient tissue for biomarker testing. In addition, tumour biopsies are limited by tumour heterogeneity, particularly in the setting of disease resistance, and thus may yield false-negative results. Hence, there have been considerable efforts to determine if liquid biopsy in which molecular alterations can be non-invasively identified in plasma cell-free ctDNA, a potential surrogate for the entire tumour genome, can overcome the issues with tissue biopsies and replace the need for the latter.
    Matched MeSH terms: Lung Neoplasms/metabolism
  19. Lim SL, Mustapha NM, Goh YM, Bakar NA, Mohamed S
    Mol Cell Biochem, 2016 May;416(1-2):85-97.
    PMID: 27106908 DOI: 10.1007/s11010-016-2698-x
    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.
    Matched MeSH terms: Lung Neoplasms/metabolism
  20. Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299042 DOI: 10.3390/ijms22147424
    Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
    Matched MeSH terms: Lung Neoplasms/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links