Displaying publications 1 - 20 of 176 in total

Abstract:
Sort:
  1. Azidah AK, Mohd Faizal MA, Lili HY, Zeehaida M
    Trop Biomed, 2014 Mar;31(1):31-5.
    PMID: 24862042 MyJurnal
    Plasmodium knowlesi has been recently identified as the "fifth human malaria species" following the discovery in Malaysian Borneo of a large focus of this simian malaria parasite in humans. Even though it shares microscopic similarities with Plasmodium malariae, it may cause severe illness with risk of fatality. We describe a case of P. knowlesi infection causing multi-organ failure in a patient who was successfully managed due to early recognition of the infection. Clinicians in this region should be more aware of the infection as it is not as rare as previously thought. This case write up highlight the case of severe malaria infection which presented with multi organ involvement which is caused by P. knowlesi.
    Matched MeSH terms: Malaria/parasitology
  2. Azira NM, Zairi NZ, Amry AR, Zeehaida M
    Trop Biomed, 2012 Sep;29(3):398-404.
    PMID: 23018503 MyJurnal
    Plasmodium knowlesi is a simian malaria parasite and is recently recognized as the fifth malaria parasite infecting humans. Manifestation of the infection may resemble other infection particularly dengue fever leading to inappropriate management and delay in treatment. We reported three cases of naturally acquired P. knowlesi in Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Clinical manifestations were quite similar in those cases. Microscopically, the diagnosis might be challenging. These cases were confirmed by polymerase chain reaction method which serves as a gold standard.
    Matched MeSH terms: Malaria/parasitology
  3. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Malaria/parasitology
  4. Grigg MJ, William T, Dhanaraj P, Menon J, Barber BE, von Seidlein L, et al.
    BMJ Open, 2014 Aug 19;4(8):e006005.
    PMID: 25138814 DOI: 10.1136/bmjopen-2014-006005
    INTRODUCTION: Malaria due to Plasmodium knowlesi is reported throughout South-East Asia, and is the commonest cause of it in Malaysia. P. knowlesi replicates every 24 h and can cause severe disease and death. Current 2010 WHO Malaria Treatment Guidelines have no recommendations for the optimal treatment of non-severe knowlesi malaria. Artemisinin-combination therapies (ACT) and chloroquine have each been successfully used to treat knowlesi malaria; however, the rapidity of parasite clearance has not been prospectively compared. Malaysia's national policy for malaria pre-elimination involves mandatory hospital admission for confirmed malaria cases with discharge only after two negative blood films; use of a more rapidly acting antimalarial agent would have health cost benefits. P. knowlesi is commonly microscopically misreported as P. malariae, P. falciparum or P. vivax, with a high proportion of the latter two species being chloroquine-resistant in Malaysia. A unified ACT-treatment protocol would provide effective blood stage malaria treatment for all Plasmodium species.

    METHODS AND ANALYSIS: ACT KNOW, the first randomised controlled trial ever performed in knowlesi malaria, is a two-arm open-label trial with enrolments over a 2-year period at three district sites in Sabah, powered to show a difference in proportion of patients negative for malaria by microscopy at 24 h between treatment arms (clinicaltrials.gov #NCT01708876). Enrolments started in December 2012, with completion expected by September 2014. A total sample size of 228 is required to give 90% power (α 0.05) to determine the primary end point using intention-to-treat analysis. Secondary end points include parasite clearance time, rates of recurrent infection/treatment failure to day 42, gametocyte carriage throughout follow-up and rates of anaemia at day 28, as determined by survival analysis.

    ETHICS AND DISSEMINATION: This study has been approved by relevant institutional ethics committees in Malaysia and Australia. Results will be disseminated to inform knowlesi malaria treatment policy in this region through peer-reviewed publications and academic presentations.

    TRIAL REGISTRATION NUMBER: NCT01708876.

    Matched MeSH terms: Malaria/parasitology
  5. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
    Matched MeSH terms: Malaria/parasitology*
  6. Barber BE, Russell B, Grigg MJ, Zhang R, William T, Amir A, et al.
    Blood Adv, 2018 02 27;2(4):433-443.
    PMID: 29487058 DOI: 10.1182/bloodadvances.2017013730
    The simian parasite Plasmodium knowlesi can cause severe and fatal human malaria. However, little is known about the pathogenesis of this disease. In falciparum malaria, reduced red blood cell deformability (RBC-D) contributes to microvascular obstruction and impaired organ perfusion. In P knowlesi infection, impaired microcirculatory flow has been observed in Macaca mulatta (rhesus macaques), unnatural hosts who develop severe and fatal disease. However, RBC-D has not been measured in human infection or in the natural host M fascicularis (long-tailed macaques). Using ektacytometry, we measured RBC-D in adults with severe and non-severe knowlesi and falciparum malaria and in healthy controls. In addition, we used micropipette aspiration to determine the relative stiffness of infected RBCs (iRBCs) and uninfected RBCs (uRBCs) in P knowlesi-infected humans and M fascicularis Ektacytometry demonstrated that RBC-D overall was reduced in human knowlesi malaria in proportion to disease severity, and in severe knowlesi malaria, it was comparable to that of severe falciparum malaria. RBC-D correlated inversely with parasitemia and lactate in knowlesi malaria and HRP2 in falciparum malaria, and it correlated with hemoglobin nadir in knowlesi malaria. Micropipette aspiration confirmed that in humans, P knowlesi infection increased stiffness of both iRBCs and uRBCs, with the latter mostly the result of echinocytosis. In contrast, in the natural host M fascicularis, echinocyte formation was not observed, and the RBC-D of uRBCs was unaffected. In unnatural primate hosts of P knowlesi, including humans, reduced deformability of iRBCs and uRBCs may represent a key pathogenic mechanism leading to microvascular accumulation, impaired organ perfusion, and anemia.
    Matched MeSH terms: Malaria/parasitology
  7. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: Malaria/parasitology*
  8. White NJ
    Clin Infect Dis, 2008 Jan 15;46(2):172-3.
    PMID: 18171246 DOI: 10.1086/524889
    Matched MeSH terms: Malaria/parasitology*
  9. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Malar J, 2019 Mar 08;18(1):66.
    PMID: 30849978 DOI: 10.1186/s12936-019-2693-2
    Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
    Matched MeSH terms: Malaria/parasitology
  10. Waugh S
    Parasit Vectors, 2015;8:79.
    PMID: 25651916 DOI: 10.1186/s13071-015-0694-8
    The use of detailed methodologies and legitimate settings justifications in spatial analysis is imperative to locating areas of significance. Studies missing this action may enact interventions in improper areas.
    Matched MeSH terms: Malaria/parasitology
  11. Che Rahim MJ, Mohammad N, Besari AM, Wan Ghazali WS
    BMJ Case Rep, 2017 Feb 20;2017.
    PMID: 28219910 DOI: 10.1136/bcr-2016-218480
    We report a case of severe Plasmodium knowlesi and dengue coinfection in a previously healthy 59-year-old Malay man who presented with worsening shortness of breath, high-grade fever with chills and rigors, dry cough, myalgia, arthralgia, chest discomfort and poor appetite of 1 week duration. There was a history mosquito fogging around his neighbourhood in his hometown. Further history revealed that he went to a forest in Jeli (northern part of Kelantan) 3 weeks prior to the event. Initially he was treated as severe dengue with plasma leakage complicated with type 1 respiratory failure as evidenced by positive serum NS1-antigen and thrombocytopenia. Blood for malarial parasite (BFMP) was sent for test as there was suspicion of malaria due to persistent thrombocytopenia despite recovering from dengue infection and the presence of a risk factor. The test revealed high count of malaria parasite. Confirmatory PCR identified the parasite to be Plasmodium knowlesi Intravenous artesunate was administered to the patient immediately after acquiring the BFMP result. Severe malaria was complicated with acute kidney injury and septicaemic shock. Fortunately the patient made full recovery and was discharged from the ward after 2 weeks of hospitalisation.
    Matched MeSH terms: Malaria/parasitology
  12. Anderios F, Noorrain A, Vythilingam I
    Exp Parasitol, 2010 Feb;124(2):181-9.
    PMID: 19765587 DOI: 10.1016/j.exppara.2009.09.009
    Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per microL of blood for asexual stage and 88-264 parasites per microL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.
    Matched MeSH terms: Malaria/parasitology*
  13. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
    Matched MeSH terms: Malaria/parasitology
  14. Vythilingam I
    Trop Biomed, 2010 Apr;27(1):1-12.
    PMID: 20562807 MyJurnal
    Plasmodium knowlesi in humans is life threatening, is on the increase and has been reported from most states in Malaysia. Anopheles latens and Anopheles cracens have been incriminated as vectors. Malaria is now a zoonoses and is occurring in malaria free areas of Malaysia. It is also a threat to eco-tourism. The importance of the vectors and possible control measures is reviewed here.
    Matched MeSH terms: Malaria/parasitology*
  15. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

    Matched MeSH terms: Malaria/parasitology
  16. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
    Matched MeSH terms: Malaria/parasitology
  17. Sermwittayawong N, Nishibuchi M, Sawangjaroen N, Vuddhakul V
    PMID: 26867373
    During 2009 to 2010, a total of 408 blood samples collected from malaria patients in Ranong (149) and Yala (259) Provinces, Thailand were investigated for Plasmodium spp using microscopic examination. There are no statistical differences in the prevalence of P. falciparum and P. vivax in samples collected from Ranong and Yala (46% vs 52%, and 54% vs 45%, respectively). Single nucleotide polymorphism of codon 86 in pfmdr1 (encoding P. falciparum multidrug resistance protein 1) was investigated among 75 samples of P. falciparum and 2 samples of P. knowlesi. A pfmdr1 N86Y mutation was detected in 1 out of 29 samples and 45 out of 46 samples obtained from Ranong and Yala Provinces, respectively. It is interesting that pfmdr1 was detected in two P. knowlesi DNA samples obtained previously from Ranong Province which was 99% homologous to pfmdr1 obtained from falciparum parasites in the same area but the mutation was not observed. The difference in multidrug resistance protein in Plasmodium obtained from those two border areas of Thailand will be of use in monitoring drug resistance in these border regions of the country.
    Matched MeSH terms: Malaria/parasitology
  18. Hartmeyer GN, Stensvold CR, Fabricius T, Marmolin ES, Hoegh SV, Nielsen HV, et al.
    Emerg Infect Dis, 2019 10;25(10):1936-1939.
    PMID: 31538931 DOI: 10.3201/eid2510.190448
    We report human infection with simian Plasmodium cynomolgi in a tourist from Denmark who had visited forested areas in peninsular Malaysia and Thailand in August and September 2018. Because P. cynomolgi may go unnoticed by standard malaria diagnostics, this malaria species may be more common in humans than was previously thought.
    Matched MeSH terms: Malaria/parasitology*
  19. Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB, et al.
    J Infect Dis, 2017 Apr 01;215(7):1148-1155.
    PMID: 28201638 DOI: 10.1093/infdis/jix091
    Background: As Indonesia works toward the goal of malaria elimination, information is lacking on malaria epidemiology from some western provinces. As a basis for studies of antimalarial efficacy, we set out to survey parasite carriage in 3 communities in North Sumatera Province.

    Methods: A combination of active and passive detection of infection was carried out among communities in Batubara, Langkat, and South Nias regencies. Finger-prick blood samples from consenting individuals of all ages provided blood films for microscopic examination and blood spots on filter paper. Plasmodium species were identified using nested polymerase chain reaction (PCR) of ribosomal RNA genes and a novel assay that amplifies a conserved sequence specific for the sicavar gene family of Plasmodium knowlesi.

    Results: Of 3731 participants, 614 (16.5%) were positive for malaria parasites by microscopy. PCR detected parasite DNA in samples from 1169 individuals (31.3%). In total, 377 participants (11.8%) harbored P. knowlesi. Also present were Plasmodium vivax (14.3%), Plasmodium falciparum (10.5%) and Plasmodium malariae (3.4%).

    Conclusions: Amplification of sicavar is a specific and sensitive test for the presence of P. knowlesi DNA in humans. Subpatent and asymptomatic multispecies parasitemia is relatively common in North Sumatera, so PCR-based surveillance is required to support control and elimination activities.

    Matched MeSH terms: Malaria/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links