Displaying publications 1 - 20 of 72 in total

Abstract:
Sort:
  1. Abdullahi, U.F., Igwenagu, E., Aliyu, S., Mu’azu, A., Naim, R., Wan-Taib, W.R.
    MyJurnal
    This study describes the development of a rapid and sensitive Loop-mediated isothermal
    amplification assay for detection of swine DNA in adulterated meat and meat products. The
    need to protect consumer’s right to eat foods of their choices, has made it imperative for
    researchers to develop efficient means of screening and certification of food products. Six sets
    of LAMP primers designed based on porcine tRNA lysine gene and ATPase subunit 8 genes
    were used for the assay. Amplification was carried out under constant temperature (630C), using
    a simple laboratory water bath. Average time spent in amplification and detection of results was
    25 min. All results were visually detected and confirmed by electrophoresis. Detection limit of
    the assay was 0.03 femtogram (fg) much high than the PCR assay, and detection probability of
    the assay was 100%. Detection of 0.5% of pork spiked with 99.5% of cattle beef is indicative
    of the sensitivity and robustness of the assay. This could serve as a prototype for development
    of a sensitive and inexpensive Swine DNA LAMP detection kit.
    Matched MeSH terms: Meat Products
  2. Windarsih A, Bakar NKA, Dachriyanus, Yuliana ND, Riswanto FDO, Rohman A
    Molecules, 2023 Aug 09;28(16).
    PMID: 37630216 DOI: 10.3390/molecules28165964
    Beef sausage (BS) is one of the most favored meat products due to its nutrition and good taste. However, for economic purposes, BS is often adulterated with pork by unethical players. Pork consumption is strictly prohibited for religions including Islam and Judaism. Therefore, advanced detection methods are highly required to warrant the halal authenticity of BS. This research aimed to develop a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method to determine the halal authenticity of BS using an untargeted metabolomics approach. LC-HRMS was capable of detecting various metabolites in BS and BS containing pork. The presence of pork in BS could be differentiated using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) with high accuracy. PLS-DA perfectly classified authentic BS and BS containing pork in all concentration levels of pork with R2X = (0.821), R2Y(= 0.984), and Q2 = (0.795). The level of pork in BS was successfully predicted through partial least squares (PLS) and orthogonal PLS (OPLS) chemometrics. Both models gave high R2 (>0.99) actual and predicted values as well as few errors, indicating good accuracy and precision. Identification of discriminating metabolites' potential as biomarker candidates through variable importance for projections (VIP) value revealed metabolites of 2-arachidonyl-sn-glycero-3-phosphoethanolamine, 3-hydroxyoctanoylcarnitine, 8Z,11Z,14Z-eicosatrienoic acid, D-(+)-galactose, oleamide, 3-hydroxyhexadecanoylcarnitine, arachidonic acid, and α-eleostearic acid as good indicators to detect pork. It can be concluded that LC-HRMS metabolomics combined with PCA, PLS-DA, PLS, and OPLS was successfully used to detect pork adulteration in beef sausages. The results imply that LC-HRMS untargeted metabolomics in combination with chemometrics is a promising alternative as an analytical technique to detect pork in sausage products. Further analysis of larger samples is required to warrant the reproducibility.
    Matched MeSH terms: Meat Products*
  3. Zakaria Z, Hassan L, Sharif Z, Ahmad N, Ali RM, Husin SA, et al.
    BMC Vet Res, 2020 Oct 17;16(1):393.
    PMID: 33069231 DOI: 10.1186/s12917-020-02605-y
    BACKGROUND: Salmonella is a very important foodborne pathogen causing illness in humans. The emergence of drug-resistant strains also constitutes a serious worry to global health and livestock productivity. This study investigated Salmonella isolates from chicken and chicken meat products using the phenotypic antimicrobial screening as well as the molecular characteristics of Salmonella isolates. Upon serotyping of the isolates, the antimicrobial susceptibility profiling using a panel of 9 commonly used antimicrobials was done. Subsequently, the molecular profiles of all the isolates were further determined using Pulsed Field Gel Electrophoresis (PFGE) and the Whole Genome Multi-Locus Sequence Type (wgMLST) analysis in order to obtain the sequence types.

    RESULTS: The PFGE data was input into FPQuest software, and the dendrogram generated was studied for possible genetic relatedness among the isolates. All the isolates were found to belong to the Salmonella Enteritidis serotype with notable resistance to tetracycline, gentamycin, streptomycin, and sulfadimidine. The S. Enteritidis isolates tested predominantly subtyped into the ST11 and ST1925, which was found to be a single cell variant of ST11. The STs were found to occur in chicken meats, foods, and live chicken cloacal swabs, which may indicate the persistence of the bacteria in multiple foci.

    CONCLUSION: The data demonstrate the presence of S. Enteritidis among chickens, indicating its preference and reservoir status for enteric Salmonella pathogens.

    Matched MeSH terms: Meat Products/microbiology*
  4. Ali ME, Hashim U, Mustafa S, Che Man YB, Dhahi TS, Kashif M, et al.
    Meat Sci, 2012 Aug;91(4):454-9.
    PMID: 22444666 DOI: 10.1016/j.meatsci.2012.02.031
    A test for assessing pork adulteration in meatballs, using TaqMan probe real-time polymerase chain reaction, was developed. The assay combined porcine-specific primers and TaqMan probe for the detection of a 109 bp fragment of porcine cytochrome b gene. Specificity test with 10 ng DNA of eleven different species yielded a threshold cycle (Ct) of 15.5 ± 0.20 for the pork and negative results for the others. Analysis of beef meatballs with spiked pork showed the assay can determine 100-0.01% contaminated pork with 102% PCR efficiency, high linear regression (r(2) = 0.994) and ≤ 6% relative errors. Residuals analysis revealed a high precision in all determinations. Random analysis of commercial meatballs from pork, beef, chicken, mutton and goat, yielded a Ct between 15.89 ± 0.16 and 16.37 ± 0.22 from pork meatballs and negative results from the others, showing the suitability of the assay to determine pork in commercial meatballs with a high accuracy and precision.
    Matched MeSH terms: Meat Products/analysis*; Meat Products/standards
  5. Moritz KB, Kopp T, Stingl G, Bublin M, Breiteneder H, Wöhrl S
    Allergol Immunopathol (Madr), 2011 Jul-Aug;39(4):244-5.
    PMID: 21741147 DOI: 10.1016/j.aller.2010.06.010
    Matched MeSH terms: Meat Products/adverse effects
  6. Konsue, N., Amron, N.A.
    MyJurnal
    Cruciferous vegetables belong to the mustard family of plants such as Brussels sprouts, kale, broccoli, cabbage and cauliflower. They are well known for their cancer prevention properties which are due to high content of bioactive compounds, isothiocyanates (ITCs). This study was aimed to investigate nitrosation inhibition ability of the cruciferous vegetables commonly consumed with meat products namely, broccoli, cauliflower and cabbage. Aqueous extracts of fresh and steamed (2 and 4 min) vegetables were subjected to determination of antioxidant capacity (DPPH and FRAP assay) and chemical composition i.e. total phenolic and isothiocyanate (ITC) content. It was found that TPC, DPPH and FRAP values of raw vegetables were different in each vegetable and ranged from 17.12-38.91 mg GAE/100 ml, 44.09-63.31% and 1.36-6.81 mg TE/100 ml, respectively. Among three types of cruciferous vegetable, broccoli had the highest PEITC content being 0.21 mmol/100 g compared to cauliflower (0.15 mmol/100 g) and cabbage (0.06 mmol/100 g). Moreover, it was found that steaming process significantly enhanced antioxidant activity, TPC as well as PEITC content in a timedependent manner up to 4 min (p
    Matched MeSH terms: Meat Products
  7. Cheah PB, Gan SP
    J Food Prot, 2000 Mar;63(3):404-7.
    PMID: 10716573
    The antioxidant and microbial stabilities of galangal (Alpinia galanga) extract in raw minced beef were examined at 4 +/- 1 degree C. Raw minced beef containing galangal extracts (0 to 0.10%, wt/wt) were prepared. Lipid oxidation during refrigerated storage was assessed by monitoring malonaldehyde formation, using the thiobarbituric acid reactive substances method. In minced beef, added galangal extract improved oxidative stability. Galangal extract at higher concentrations of 0.05% and 0.10% (wt/wt) were also found to extend the shelf-life of minced beef. Addition of alpha-tocopherol (0.02%, wt/wt) to galangal extract (0.05%, wt/wt) were observed to increase the oxidative but not the microbial stability of minced beef during the storage of 7 days. Galangal extract may prove useful in inhibiting lipid oxidation and increasing microbial stability of minced meat.
    Matched MeSH terms: Meat Products/microbiology*
  8. Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Abdulkarim, S.M., Son, R., Marian, M.N.
    MyJurnal
    Listeria monocytogenes (L. monocytogenes) is a serious food-borne pathogen for immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments. The biofilm transfers contamination to food products and impose risk to public health. Transfers contamination to food products, and impose risk hazard to public health. The aim of this study was to investigate biofilm producing ability of L. monocytogenes isolates. Microtitre assay was used to measure the amount of biofilm production by ten L. monocytogenes isolates from minced chicken / meat, sausages and burgers. Results showed that all 10 L. monocytogenes isolates were able to form biofilm after 24 h at 20˚C on polystyrene surface (the common surface in food industries). Some strains were capable of forming biofilm more than the others. All strains showed a slight raise in the quantities of attached cells over 48 and 72 h. L. monocytogenes strains isolated from minced chicken, minced meat and burgers were better biofilm-producers comparing to the strains isolated from sausages.
    Matched MeSH terms: Meat Products
  9. MyJurnal
    The aim of this study was to examine vegetarian burger patties manufactured by two producers in Malaysia for the presence of Listeria monocytogenes. Brand A was produced by an established food manufacturer
    while Brand B was produced by a small-scaled food producer. A total of 108 samples of vegetarian burger
    patties produced by both manufacturers were sampled from retail market and were analyzed by combined
    MPN-PCR and MPN plating method. Of all the samples tested, ten (9.3%) were found to be contaminated with L. monocytogenes. The L. monocytogenes contamination level in vegetarian burger patties manufactured by producer A (20.9% of the samples were contaminated with 3-1100 MPN/g of L. monocytogenes) was significantly higher (P
    Matched MeSH terms: Meat Products
  10. Sabow AB, Zulkifli I, Goh YM, Ab Kadir MZ, Kaka U, Imlan JC, et al.
    PLoS One, 2016;11(4):e0152661.
    PMID: 27035716 DOI: 10.1371/journal.pone.0152661
    The influence of pre-slaughter electrical stunning techniques and slaughter without stunning on bleeding efficiency and shelf life of chevon during a 14 d postmortem aging were assessed. Thirty two Boer crossbred bucks were randomly assigned to four slaughtering techniques viz slaughter without stunning (SWS), low frequency head-only electrical stunning (LFHO; 1 A for 3 s at a frequency of 50 Hz), low frequency head-to-back electrical stunning (LFHB; 1 A for 3 s at a frequency of 50 Hz) and high frequency head-to-back electrical stunning (HFHB; 1 A for 3 s at a frequency of 850 Hz). The SWS, LFHO and HFHB goats had higher (p<0.05) blood loss and lower residual hemoglobin in muscle compared to LFHB. The LFHB meat had higher (p<0.05) TBARS value than other treatments on d 7 and 14 d postmortem. Slaughtering methods had no effect on protein oxidation. Higher bacterial counts were observed in LFHB meat compared to those from SWS, LFHO and HFHB after 3 d postmortem. Results indicate that the low bleed-out in LFHB lowered the lipid oxidative stability and microbiological quality of chevon during aging.
    Matched MeSH terms: Meat Products/microbiology*
  11. Babji, A.S., Ghassem, M., Hong, P.K., Maizatul, S.M.S.
    ASM Science Journal, 2012;6(2):144-147.
    MyJurnal
    Research and development trends will continue to design innovative composite foods in which muscle proteins are combined with non-conventional animal products, non-meat proteins and functional food additives, many of which have lost their original inherent properties and characteristics. Composite food are products with meat, non-meat proteins, fats, carbohydrates and functional ingredients such as pre-emulsion, probiotics, enzymes, bioactives, peptides, hormones, emulsifiers, gelatin, animal fats/oils, alcohol and visceral tissues. Traceability of halal meat raw materials should start at the point of animal breeding, production to the stage of halal slaughter, processing operations and final point of consumption. Traceability of food additives used in the food industry remains a major hurdle for the Muslim community seeking halal food. The processes and technological advancements made in raw material processing, ingredient extractions, modifications, purification and resynthesized into many food ingredients make the question of traceability and solving of the materials and processes that are halal a monumental task. Food is only halal if the entire food chain from farm to table, is processed, handled and stored in accordance with the syariah and/or halal standards or guidelines, such as in the Jabatan Kemajuan Islam Malaysia (JAKIM): General guidelines, Malaysia Standards MS 1500:2009 and Codex Alimentarius (Food Labeling). Here lies the challenge and importance of traceability to verify the ‘wholesomeness’ of the sources of halal raw materials and final meat-based food products.
    Matched MeSH terms: Meat Products
  12. Tan SS, Aminah A, Mohd Suria Affandi Y, Atil O, Babji AS
    Int J Food Sci Nutr, 2001 Jan;52(1):91-8.
    PMID: 11225183
    Physico-chemical and sensory characteristics of frankfurters prepared with three types of palm fats (PF60: 40, PF70: 30 and PF80: 20) and palm olein (POo) at 20 and 25% of fat levels were studied. Incorporation of different fats at 20 and 25% did not affect the cooking yields of the frankfurters. Frankfurters incorporated with 25% POo showed the highest value of water-holding capacity (WHC) among eight formulations. The frankfurters containing POo showed the least cooking loss compared to those with palm fats. The incorporation of different type and level of fats resulted in significant changes in the colour (lightness, redness, yellowness) of frankfurters. Texture profiles of both raw and cooked frankfurters were found to be altered by the blending of different type and level of fats. In raw frankfurters, hardness for frankfurters mixed with palm fats were significantly higher than the one with POo but greater values for cohesiveness was observed in raw frankfurters blended with POo. Lowest chewiness was demonstrated by frankfurters mixed with 20% POo. Grilling increased the hardness values of all frankfurters. Contrary to the raw counterparts, cooked frankfurter with POo was the hardest among all formulations. Cohesiveness and chewiness was also found to be significantly higher for cooked frankfurters mixed with POo. Raw frankfurters with fat content of 25% showed greater value in hardness than those of 20%. However, there were no significant differences (P > 0.05) observed for all the texture profile attributes in cooked frankfurters due to fat levels. In sensory evaluation, frankfurters prepared with POo were found to be most acceptable by consumer panels as they scored the highest for hardness rating, chicken flavour, oiliness and overall acceptance attributes.
    Matched MeSH terms: Meat Products/analysis*
  13. Chan KW, Khong NM, Iqbal S, Ch'ng SE, Younas U, Babji AS
    J Food Sci Technol, 2014 Nov;51(11):3269-76.
    PMID: 26396320 DOI: 10.1007/s13197-012-0818-5
    Cinnamon deodorised aqueous extract (CinDAE) was prepared and evaluated for its total phenolic (315.3 ± 35.4 mg GAE/g) and flavonoid (99.3 ± 9.6 mg RE/g) contents. Stabilizing efficiency of CinDAE, for chicken meatballs, was measured against oxidative deterioration as function of storage time under chilled conditions. For this purpose, oxidative stability [2-thiobarbituric acid reactive substances (TBARS); peroxide value (PV)], colour and sensory acceptability were measured in the control meatballs (C), and those stabilized with 200 ppm of: CinDAE (T1), ascorbic acid (T2), BHA/BHT (50/50; w/w) (T3). In comparison to "C", induction period (IP) and redness (a* value) of the stabilized samples (T1, T2 and T3) were increased, while PV and TBARS were decreased throughout storage (8 ± 1 °C) significantly (p meat products.
    Matched MeSH terms: Meat Products
  14. Savadkoohi S, Hoogenkamp H, Shamsi K, Farahnaky A
    Meat Sci, 2014 Aug;97(4):410-8.
    PMID: 24769097 DOI: 10.1016/j.meatsci.2014.03.017
    The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p<0.05) values for lightness (L*) and yellowness (b*). Furthermore, there were no significant (p>0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference.
    Matched MeSH terms: Meat Products/analysis*
  15. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
    Matched MeSH terms: Meat Products/analysis*
  16. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
    Matched MeSH terms: Meat Products/microbiology*
  17. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Meat Products
  18. Hossain MA, Ali ME, Abd Hamid SB, Asing, Mustafa S, Mohd Desa MN, et al.
    J Agric Food Chem, 2016 Aug 17;64(32):6343-54.
    PMID: 27501408 DOI: 10.1021/acs.jafc.6b02224
    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.
    Matched MeSH terms: Meat Products/analysis*
  19. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
    Matched MeSH terms: Meat Products/analysis*
  20. Bakar, J., Abdul Kadir, N. S., Ahmad Mazlan, A. S., Ismail Fitry, M. R.
    MyJurnal
    The quality change of fish sausage (keropok lekor) coated in sago starch-gelatine coating with
    papaya seed extract (PSE) during chill storage (7°C) was determined. During storage, pH,
    thiobarbituric acid value (TBA), colour, moisture, and the total plate count were evaluated. pH
    of samples significantly dropped (p < 0.05) during storage, and the highest decrease was in
    control sample. The moisture content in control sample had an increasing trend while that of
    samples with 5 and 7% PSE coatings significantly decreased, and only a slight change for
    samples with 0% PSE coating. All samples had significant increase in their TBA values during
    storage. The presence of the coating provided a positive effect on the colour of the fish sausages since no significant colour changes were observed during storage. TPC of control and
    coated sausage in 0, 5, and 7% PSE exceeded the recommended microbial standard after 2, 6,
    8, and 4 d of storage, respectively. Overall, coating with 5% of PSE was the most effective in
    retarding the quality deterioration of the fish sausages.
    Matched MeSH terms: Meat Products
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links