Displaying publications 1 - 20 of 799 in total

Abstract:
Sort:
  1. Altamimi AS, Alafeefy AM, Balode A, Vozny I, Pustenko A, El Shikh ME, et al.
    J Enzyme Inhib Med Chem, 2018 Dec;33(1):147-150.
    PMID: 29199484 DOI: 10.1080/14756366.2017.1404593
    A series of symmetric molecules incorporating aryl or pyridyl moieties as central core and 1,4-substituted triazoles as a side bridge was synthesised. The new compounds were investigated as lactate dehydro-genase (LDH, EC 1.1.1.27) inhibitors. The cancer associated LDHA isoform was inhibited with IC50 = 117-174 µM. Seven compounds exhibited better LDHA inhibition (IC50 117-136 µM) compared to known LDH inhibitor - galloflavin (IC50 157 µM).
    Matched MeSH terms: Molecular Structure
  2. Chidan Kumar CS, Parlak C, Fun HK, Tursun M, Bilge M, Chandraju S, et al.
    PMID: 25989614 DOI: 10.1016/j.saa.2015.05.012
    Molecular structure and properties of 1-(2-hydroxy-4,5-dimethylphenyl)ethanone were experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of the reported compound were supported with computational studies using the density functional theory (DFT), with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set. Potential energy distribution (PED) and potential energy surface (PES) analyses were performed to identify characteristic frequencies and reliable conformational analysis correspondingly. The compound crystallizes in monoclinic space group C2/c with the CO up-OH down conformation. There is a good agreement between the experimentally determined geometrical parameters and vibrational frequencies of the compound to those predicted theoretically.
    Matched MeSH terms: Molecular Structure
  3. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
    Matched MeSH terms: Molecular Structure
  4. Gorajana A, Venkatesan M, Vinjamuri S, Kurada BV, Peela S, Jangam P, et al.
    Microbiol Res, 2007;162(4):322-7.
    PMID: 16580188
    In our systematic screening programme for marine actinomycetes, a bioactive Streptomycete was isolated from marine sediment samples of Bay of Bengal, India. The taxonomic studies indicated that the isolate belongs to Streptomyces chibaensis and it was designated as S. chibaensis AUBN1/7. The isolate yielded a cytotoxic compound. It was obtained by solvent extraction followed by the chromatographic purification. Based on the spectral data of the pure compound, it was identified as quinone-related antibiotic, resistoflavine (1). It showed a potent cytotoxic activity against cell lines viz. HMO2 (Gastric adenocarcinoma) and HePG2 (Hepatic carcinoma) in vitro and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria.
    Matched MeSH terms: Molecular Structure
  5. Zakaryan H, Arabyan E, Oo A, Zandi K
    Arch Virol, 2017 Sep;162(9):2539-2551.
    PMID: 28547385 DOI: 10.1007/s00705-017-3417-y
    Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
    Matched MeSH terms: Molecular Structure
  6. Karunakaran T, Ee GCL, Ismail IS, Mohd Nor SM, Zamakshshari NH
    Nat Prod Res, 2018 Jun;32(12):1390-1394.
    PMID: 28715912 DOI: 10.1080/14786419.2017.1350666
    Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and MS. The cytotoxicities and anti-inflammatory activities of these five compounds against RAW cell 264.7 were tested. The structural-activity relationship studies indicated that β-mangostin showed a significant activity against the LPS-induced RAW cell 264.7, while the acetyl- as well as the O-alkyl- β-mangostin derivatives did not give good activity. Naturally occurring β-mangostin demonstrated comparatively better anti-inflammatory activity than its synthetic counterparts.
    Matched MeSH terms: Molecular Structure
  7. Adalat B, Rahim F, Taha M, Alshamrani FJ, Anouar EH, Uddin N, et al.
    Molecules, 2020 Oct 20;25(20).
    PMID: 33092223 DOI: 10.3390/molecules25204828
    We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.
    Matched MeSH terms: Molecular Structure
  8. Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, et al.
    Sci Rep, 2020 05 14;10(1):7969.
    PMID: 32409737 DOI: 10.1038/s41598-020-64729-3
    The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1-18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
    Matched MeSH terms: Molecular Structure
  9. Aminudin NI, Ridzuan M, Susanti D, Zainal Abidin ZA
    J Asian Nat Prod Res, 2022 Feb;24(2):103-145.
    PMID: 33783284 DOI: 10.1080/10286020.2021.1906657
    Sesquiterpenoids have been identified as natural compounds showing remarkable biological activities found in medicinal plants. There is great interest in developing methods to obtain sesquiterpenoids derivatives and biotransformation is one of the alternative methods for structural modification of complex sesquiterpenes structures. Biotransformation is a great drug design tool offering high selectivity and green method. The present review describes a comprehensive summary of biotransformation products of sesquiterpenoids and its structural modification utilizing a variety of biocatalysts including microorganisms, plant tissue culture and enzymes. This review covers recent literatures from 2007 until 2020 and highlights the experimental conditions for each biotransformation process.
    Matched MeSH terms: Molecular Structure
  10. Karim AA, Tie AP, Manan DMA, Zaidul ISM
    Compr Rev Food Sci Food Saf, 2008 Jul;7(3):215-228.
    PMID: 33467803 DOI: 10.1111/j.1541-4337.2008.00042.x
      The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under- or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.
    Matched MeSH terms: Molecular Structure
  11. Leong SW, Chia SL, Abas F, Yusoff K
    Bioorg Med Chem Lett, 2020 04 15;30(8):127065.
    PMID: 32127259 DOI: 10.1016/j.bmcl.2020.127065
    In the present study, a series of nine stable 3,4,5-methoxylphenyl-containing asymmetrical diarylpentanoids, derivatives of curcuminoids, have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, LoVo and SW620, HT29, RKO and NCI-H508, respectively. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-hydroxyl and adjacent dimethoxyl groups are crucial for enhanced cytotoxicity of diarylpentanoids. Among the evaluated analogs, 8 has been identified as the lead compound due to its highest chemotherapeutic index of 9.9 and nano molar scale cytotoxicity against SW620 and RKO. Colonies formation and cell cycle analyses on 8-treated RKO cells showed that 8 exhibits strong anti-proliferative activity by inducing G2/M-phase cell arrest. Subsequent flow cytometry based annexin-V and DCFHDA studies suggested that 8 could induce apoptosis through intracellular ROS-dependent pathway. Further Western blot studies confirmed that 8 has induced intrinsic apoptosis in RKO cells through the up-regulations of Bad and Bax pro-apoptotic proteins and down-regulations of Bcl-2 and Bcl-xL pro-survival proteins. In all, the present results suggest that 8 could be a potent lead which deserves further modification and investigation in the development of small molecule-based anti-colorectal cancer agents.
    Matched MeSH terms: Molecular Structure
  12. Leong SW, Abas F, Lam KW, Yusoff K
    Bioorg Med Chem Lett, 2018 02 01;28(3):302-309.
    PMID: 29292226 DOI: 10.1016/j.bmcl.2017.12.048
    A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.
    Matched MeSH terms: Molecular Structure
  13. Leong SW, Chia SL, Abas F, Yusoff K
    Eur J Med Chem, 2018 Sep 05;157:716-728.
    PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039
    In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
    Matched MeSH terms: Molecular Structure
  14. Jahangirian H, Haron MJ, Silong S, Yusof NA
    J Oleo Sci, 2011;60(6):281-6.
    PMID: 21606615
    Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.
    Matched MeSH terms: Molecular Structure
  15. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Molecular Structure
  16. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Molecular Structure
  17. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Molecular Structure
  18. Law CSW, Yeong KY
    ChemMedChem, 2021 06 17;16(12):1861-1877.
    PMID: 33646618 DOI: 10.1002/cmdc.202100004
    Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
    Matched MeSH terms: Molecular Structure
  19. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
    Matched MeSH terms: Molecular Structure
  20. Kareem HS, Ariffin A, Nordin N, Heidelberg T, Abdul-Aziz A, Kong KW, et al.
    Eur J Med Chem, 2015 Oct 20;103:497-505.
    PMID: 26402727 DOI: 10.1016/j.ejmech.2015.09.016
    A new series of antioxidants, namely imines bearing the well-known free radical scavenger group 3,4,5-trimethoxybenzyloxy, was designed and synthesized. Theoretical calculations based on density functional theory (DFT) were performed to understand the antioxidant activities. Experimental studies evaluating the antioxidant activities of the compounds using DPPH and FRAP assays verified the predictions obtained by DMOL3 based on DFT.1. The DPPH radical scavenging activities depended on the substitution pattern of the aromatic aldehyde, with both the substitution type and position showing significant effects. Compounds 7b, 7c and 7d, which contain a phenolic hydroxyl group at the para position to the imine as well as, additional electron donating groups at the ortho-position to this hydroxyl group, exhibited IC₅₀ values of 62, 75 and 106 μg/mL, respectively, and potent antioxidant activities against DPPH, which were better than that of the reference compound BHT. With the exception of compounds 7a and 7h with a phenolic hydroxyl group at the ortho position, all of the investigated compounds exhibited ferric reducing activities above 1000 μM. Correlation analysis between the two antioxidant assays revealed moderate positive correlation (r = 0.59), indicating differing antioxidant activities based on the reaction mechanism. Therefore, imines bearing a 3,4,5-trimethoxybenzyloxy group can be proposed as potential antioxidants for tackling oxidative stress.
    Matched MeSH terms: Molecular Structure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links