Displaying publications 1 - 20 of 248 in total

Abstract:
Sort:
  1. Zulfikri N, Selvanayagam VS, Yusof A
    J Sport Rehabil, 2021 Jan 19;30(5):717-724.
    PMID: 33465761 DOI: 10.1123/jsr.2019-0483
    CONTEXT: Badminton continues to be a highly competitive sport where training is introduced at an early age and load has intensified. This exposes players to a greater risk of injuries, in particular when assessing related training outcomes such as strength, agonist-antagonist ratio, and bilateral deficit among adolescents where age- and sex-associated growth and development should be considered.

    OBJECTIVE: To evaluate strength profile of the upper and lower limbs among adolescent elite Malaysian badminton players.

    DESIGN: Cross-sectional study.

    SETTING: Laboratory.

    PARTICIPANTS: Forty-eight asymptomatic athletes (24 males and 24 females) were grouped into early and late adolescence (13-14 y old and 15-17 y old, respectively).

    MAIN OUTCOME MEASURE(S): Strength (absolute and normalized) of the external/internal rotators of the shoulder and flexor/extensor of the knee and strength derivatives, conventional strength ratio (CSR), dynamic control ratio (DCR), and bilateral deficits were measured.

    RESULTS: Males showed greater strength in all strength indices (P < .05). The older group had greater strength compared to younger for most of the upper and lower limb indices (P < .05); these effects diminished when using normalized data. For females, there was no age group effect in the shoulder and knee strength. All players displayed lower shoulder and knee normative values for CSR and DCR. Dominant and non-dominant knee strength were comparable between sex and age groups.

    CONCLUSIONS: For males, growth and maturation had a greater contribution to strength gained compared to training, whereas for females, growth, maturation, and training did not improve strength. The normalized data indicated that training did not improve all indices measured apart from external rotator strength in females. All players also displayed lower normative values of CSR and DCR. These results suggest that training in elite adolescent Malaysian badminton players lacks consideration of strength gain and injury risk factors.

    Matched MeSH terms: Muscle, Skeletal/physiology
  2. Zuhri UM, Yuliana ND, Fadilah F, Erlina L, Purwaningsih EH, Khatib A
    J Ethnopharmacol, 2024 Jan 30;319(Pt 3):117296.
    PMID: 37820996 DOI: 10.1016/j.jep.2023.117296
    ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure.

    AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation.

    MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools.

    RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds.

    CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.

    Matched MeSH terms: Muscle, Skeletal
  3. Zubaidah NH, Liew NC
    Med J Malaysia, 2014 Feb;69(1):44-5.
    PMID: 24814632 MyJurnal
    Spontaneous calf haematoma is a rare condition and few case reports have been published in the English literature. Common conditions like deep vein thrombosis and traumatic gastrocnemius muscle tear need to be considered when a patient presents with unilateral calf swelling and tenderness. Ultrasound and Magnetic Resonance Imaging are essential for confirmation of diagnosis. The purpose of this paper is to report on a rare case of spontaneous calf hematoma and its diagnosis and management.
    Matched MeSH terms: Muscle, Skeletal
  4. Zakaria ZA, Kumar GH, Mat Jais AM, Sulaiman MR, Somchit MN
    Methods Find Exp Clin Pharmacol, 2008 Jun;30(5):355-62.
    PMID: 18806894 DOI: 10.1358/mf.2008.30.5.1186084
    The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
    Matched MeSH terms: Muscle, Skeletal/chemistry*
  5. Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN
    Can J Physiol Pharmacol, 2005 Jul;83(7):635-42.
    PMID: 16091789
    The effects of an aqueous supernatant of haruan (ASH) (Channa striatus) fillet extract on various antinociception receptor system activities were examined using a mouse abdominal-constriction model. Mice that were pretreated with distilled water, s.c., followed 10 min later by administration of 25%, 50%, and 100% concentration ASH, s.c., produced a significant concentration-dependent antinociceptive activity (p < 0.001). Pretreatment with naloxone (0.3, 1.0, and 3.0 mg/kg body mass), 10 min before ASH administration, failed to block the extract antinociception. Pretreatment of the 100% concentration ASH with mecamylamine (5 mg/kg), pindolol (10 mg/kg), and haloperidol (1 mg/kg) also did not cause any significant change in its antinociception. However, pretreatment with atropine (5 mg/kg), bicuculline (10 mg/kg), phenoxybenzamine (10 mg/kg), and methysergide (5 mg/kg) were found to reverse ASH antinociception. Based on the above findings, the ASH is suggested to contain different types of bioactive compounds that act synergistically on muscarinic, GABAA, alpha-adrenergic, and serotonergic receptor systems to produce the observed antinociception.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  6. Zaiton Z, Merican Z, Khalid BA, Mohamed JB, Baharom S
    Asia Pac J Clin Nutr, 1997 Jun;6(2):116-8.
    PMID: 24394713
    The soleus muscles of hyperthyroid rats were used to investigate the effect of palm olein oil and soya bean oil on the production of lipid peroxidation products. It was found that palm olein oil but not soya bean oil significantly decreased malonaldehyde and conjugated diene levels of the soleus muscles of hyperthyroid rats. These findings suggest that palm olein per se produces less lipid peroxidation products than soya bean oil. Such an assay method gives a composite net picture of the propensity of an oil to produce lipid peroxidation products.
    Matched MeSH terms: Muscle, Skeletal
  7. Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S
    PMID: 31428175 DOI: 10.1155/2019/8394648
    Background: Loss of skeletal muscle mass, strength, and function due to gradual decline in the regeneration of skeletal muscle fibers was observed with advancing age. This condition is known as sarcopenia. Myogenic regulatory factors (MRFs) are essential in muscle regeneration as its activation leads to the differentiation of myoblasts to myofibers. Chlorella vulgaris is a coccoid green eukaryotic microalga that contains highly nutritious substances and has been reported for its pharmaceutical effects. The aim of this study was to determine the effect of C. vulgaris on the regulation of MRFs and myomiRs expression in young and senescent myoblasts during differentiation in vitro.

    Methods: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation.

    Results: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment.

    Conclusions: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.

    Matched MeSH terms: Muscle, Skeletal
  8. Zainalabidin FA, Noorazmi MS, Bakri WN, Sathaya G, Ismail MI
    Trop Life Sci Res, 2017 Jan;28(1):161-166.
    PMID: 28228924 MyJurnal DOI: 10.21315/tlsr2017.28.1.12
    Sarcosporidiosis is a disease caused by intracellular protozoan parasites, namely, Sarcocystis spp. In pigs, three species of Sarcocystis spp. have been recognised, including Sarcocystis meischeriana, Sarcocystis porcifelis and Sarcocystis suihominis. The aim of this study is to determine the prevalence of muscular sarcosporidiosis in pigs using the pepsin digestion technique. A total of 150 fresh heart, oesophagus and thigh muscle samples from 50 Yorkshire and Landrace pigs were collected from two local abattoirs in Perak from May to August 2014. All the fresh muscle samples were thoroughly examined for macrocyst-forming Sarcocystis spp. and processed using the peptic digestion technique to detect bradyzoites. The results from the muscle samples showed that 58% (29 out of 50) of the pigs were positive for Sarcocystis spp. These findings highlight the importance of implementing stringent measures for screening pigs in abattoirs for Sarcocystis spp. infection because this infection in pigs is a public health concern.
    Matched MeSH terms: Muscle, Skeletal
  9. Zailani MH, Azmi MN, Deen KI
    Med J Malaysia, 2010 Mar;65(1):66-7.
    PMID: 21265253 MyJurnal
    Faecal incontinence is a debilitating chronic clinical condition which may affect the patient and care givers. Modality of treatment is based on severity of the symptoms as well as the anatomical defect itself, availability of resources and expertise. We describe a modified technique of dynamic graciloplasty as neoanal sphincter for the treatment severe faecal incontinence who has failed previous over lapping sphincteroplasty. In our modified version, instead of using implanted intramuscular electrodes and subcutaneous neurostimulator to provide continuous stimulation, the patient will undergo an external stimulation on the nerve of transplanted gracilis periodically and concurrent biofeedback therapy. We believe the technique is relatively easy to learn and very cost effective without any electrodes or neurostimulator related complications.
    Matched MeSH terms: Muscle, Skeletal/innervation; Muscle, Skeletal/transplantation*
  10. Zahari Z, Naga DNA, Bukry SA
    Med J Malaysia, 2024 Mar;79(Suppl 1):168-175.
    PMID: 38555902
    INTRODUCTION: Lower Cross Syndrome (LCS) is a prevalent condition that manifests as muscular tension due to the asymmetry in the strength of the lower extremity muscles. This imbalance could be due to the tautness of the iliopsoas, rectus femoris, tensor fascia latae, adductor group, gastrocnemius, and soleus muscles. LCS causes a postural imbalance in the individual, which triggers low back pain (LBP). When LCS is present alongside LBP, may cause the upper body to sway more in the transverse plane and at the lumbar level, making walking and termination of gait (GT) more difficult. However, the evidence of motor control and gait performance is scarce with inconclusive findings. Thus, this study aimed to review motor control on gait performance among individuals with lower crossed syndrome. This review is conducted to determine the motor control on gait performance in patients with LCS and how the conditions affect gait.

    MATERIALS AND METHODS: The databases Google Scholar, Science Direct, ResearchGate, PubMed, and Scopus were searched to identify potentially relevant documents. The keywords used for the search included "motor control" OR "motor learning" OR" core stability" AND "lower crossed syndrome" AND "gait". The search includes articles published between 1970 and 2022 and written in English. It is excluded when the paper is not a full-text article. After finding the articles, the information was extracted, including author, year of publication, country, objective, type of study, and motor control analysis summary.

    RESULTS: There were 107 articles retrieved from the search. but only seventeen articles were included for analysis. The finding demonstrates that LCS may associate with LBP and reduces the motor control of the core muscle stability which indirectly influences gait performance.

    CONCLUSIONS: This study suggests that individuals with LCS will have an alteration in their gait. However, there is still insufficient information on motor control in gait performance among lower crossed syndrome. Further research is needed to find what factors that may contribute to the adaptation of motor control in gait among LCS population.

    Matched MeSH terms: Muscle, Skeletal
  11. Zahari NK, Idrus RBH, Chowdhury SR
    Int J Mol Sci, 2017 Oct 30;18(11).
    PMID: 29084180 DOI: 10.3390/ijms18112242
    Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h-1) and migration (0.26 ± 0.04 μm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h-1) and migration (0.23 ± 0.03 μm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.
    Matched MeSH terms: Muscle, Skeletal/cytology*
  12. Zadry HR, Dawal SZ, Taha Z
    Int J Occup Saf Ergon, 2011;17(4):373-84.
    PMID: 22152503
    A study was conducted to investigate the effects of repetitive light tasks of low and high precision on upper limb muscles and brain activities. Surface electromyography (EMG) and electroencephalography (EEG) were used to measure the muscle and brain activity of 10 subjects. The results show that the root-mean-square (RMS) and mean power frquency (MPF) of the muscle activity and the mean power of the EEG alpha bands were higher on the high-precision task than on the low-precision one. There was also a high and significant correlation between upper limb muscle and brain activity during the tasks. The longer the time and the more precise the task, the more the subjects become fatigued both physically and mentally. Thus, these results could be potentially useful in managing fatigue, especially fatique related to muscle and mental workload.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  13. Zadry HR, Dawal SZ, Taha Z
    Int J Occup Saf Ergon, 2016 Sep;22(3):374-83.
    PMID: 27053140 DOI: 10.1080/10803548.2016.1150094
    This study was conducted to develop muscle and mental activities on repetitive precision tasks. A laboratory experiment was used to address the objectives. Surface electromyography was used to measure muscle activities from eight upper limb muscles, while electroencephalography recorded mental activities from six channels. Fourteen university students participated in the study. The results show that muscle and mental activities increase for all tasks, indicating the occurrence of muscle and mental fatigue. A linear relationship between muscle activity, mental activity and time was found while subjects were performing the task. Thus, models were developed using those variables. The models were found valid after validation using other students' and workers' data. Findings from this study can contribute as a reference for future studies investigating muscle and mental activity and can be applied in industry as guidelines to manage muscle and mental fatigue, especially to manage job schedules and rotation.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  14. Yong MW, Yusof N, Rampal L, Arumugam M
    J Hand Surg Asian Pac Vol, 2017 Dec;22(4):484-489.
    PMID: 29117832 DOI: 10.1142/S021881041750054X
    BACKGROUND: Palmaris Longus is being widely used in reconstructive, plastic and cosmetic surgeries due to its long tendon. It is the most readily available source for tendon grafting. The objective of this study was to determine the prevalence of absence of Palmaris Longus and its association with gender, hand dominance and absence of FDS (flexor digitorum superficialis) tendon to little finger among Malay population.

    METHODS: An analytical cross sectional study design was used and a self-administered proforma was distributed for data collection. 1239 Malay secondary school children in Putrajaya were tested for absence of Palmaris Longus using Schaffer's test. 4 additional tests namely Thompson's test, Mishra's test I, Mishra's test II and Pushpakumar's 'two-finger sign' method were used to confirm its absence in respondents with negative Schaffer's test. Function of Flexor Digitorum Superficialis tendon to little finger was determined by flexing PIP of little finger while hyperextend the other fingers.

    RESULTS: The prevalence of absence of Palmaris Longus was 11.7%. Left side absence of Palmaris Longus was much common. There was a significant association between absence of Palmaris Longus with gender in which female had higher prevalence of absence of Palmaris Longus than male.

    CONCLUSIONS: In conclusion, the prevalence of absence of Palmaris Longus in Malay population was lower than Indian but higher than Chinese population. Females had higher prevalence of absence of Palmaris Longus and no association can be found with hand dominance and absence of Flexor Digitorum Superficialis tendon to little finger.

    Matched MeSH terms: Muscle, Skeletal/abnormalities*; Muscle, Skeletal/surgery
  15. Yeap EJ, Shamsul SA, Chong KW, Sands AK
    Foot Ankle Int, 2011 Aug;32(8):830-3.
    PMID: 22049872
    Matched MeSH terms: Muscle, Skeletal/surgery*
  16. Yap YT, Gouwanda D, Gopalai AA, Chong YZ
    Med Biol Eng Comput, 2021 Mar;59(3):711-720.
    PMID: 33625670 DOI: 10.1007/s11517-021-02337-7
    Asymmetrical stiff knee gait is a mechanical pathology that can disrupt lower extremity muscle coordination. A better understanding of this condition can help identify potential complications. This study proposes the use of dynamic musculoskeletal modelling simulation to investigate the effect of induced mechanical perturbation on the kneeand to examine the muscle behaviour without invasive technique. Thirty-eight healthy participants were recruited. Asymmetrical gait was simulated using knee brace. Knee joint angle, joint moment and knee flexor and extensor muscle forces were computed using OpenSim. Differences inmuscle force between normal and abnormal conditions were investigated using ANOVA and Tukey-Kramer multiple comparison test.The results revealed that braced knee experienced limited range of motion with smaller flexion moment occuring at late swing phase. Significant differences were found in all flexormuscle forces and in several extensor muscle forces (p<0.05). Normal knee produced larger flexor muscle force than braced knee. Braced knee generated the largest extensor muscle force at early swing phase. In summary, musculoskeletal modelling simulation can be a computational tool to map and detect the differences between normal and asymmetrical gaits.
    Matched MeSH terms: Muscle, Skeletal
  17. Yap YT, Gouwanda D, Gopalai AA, Chong YZ
    J Biomech Eng, 2023 Feb 01;145(2).
    PMID: 36082472 DOI: 10.1115/1.4055564
    Musculoskeletal modeling and simulation have been an emerging trend in human gait analysis. It allows the user to isolate certain biomechanical conditions and elucidate the dynamics of joints and muscles. This study used an open-source musculoskeletal modeling and simulation tool, opensim to investigate the biomechanical effect of knee brace. It collected gait data from thirty-eight participants and examined the gait spatio-temporal parameters, joint angles, and joint moments. Static optimization was performed to estimate the lower extremity muscle force. Statistical analysis was conducted to identify the difference between normal and braced gaits. The results demonstrated the feasibility of this method to investigate the interaction and coordination of lower extremity joints and muscles. The knee brace constrained the range of the motion of the knee during walking. It also changed the walking speed, step length, and stance-to-swing ratio. Several significant differences were found in the joint moments and muscle forces of the rectus femoris, gastrocnemius, soleus and tibialis anterior. Musculoskeletal modeling and simulation tool offers a less invasive and practical alternative to analyze human motion. It also provides a means to investigate the effect of medical devices such as knee brace, which can be potentially beneficial for the future design and development of such devices and for the derivation of future rehabilitation treatment to improve patient's gait.
    Matched MeSH terms: Muscle, Skeletal/physiology
  18. Yap KH, Yee GS, Candasamy M, Tan SC, Md S, Abdul Majeed AB, et al.
    Biomolecules, 2020 09 24;10(10).
    PMID: 32987623 DOI: 10.3390/biom10101360
    Catalpol was tested for various disorders including diabetes mellitus. Numerous molecular mechanisms have emerged supporting its biological effects but with little information towards its insulin sensitizing effect. In this study, we have investigated its effect on skeletal muscle mitochondrial respiration and insulin signaling pathway. Type-2 diabetes (T2DM) was induced in male C57BL/6 by a high fat diet (60% Kcal) and streptozotocin (50 mg/kg, i.p.). Diabetic mice were orally administered with catalpol (100 and 200 mg/kg), metformin (200 mg/kg), and saline for four weeks. Fasting blood glucose (FBG), HbA1c, plasma insulin, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), oxygen consumption rate, gene (IRS-1, Akt, PI3k, AMPK, GLUT4, and PGC-1α) and protein (AMPK, GLUT4, and PPAR-γ) expression in muscle were measured. Catalpol (200 mg/kg) significantly (p < 0.05) reduced the FBG, HbA1C, HOMA_IR index, and AUC of OGTT whereas, improved the ITT slope. Gene (IRS-1, Akt, PI3k, GLUT4, AMPK, and PGC-1α) and protein (AMPK, p-AMPK, PPAR-γ and GLUT4) expressions, as well as augmented state-3 respiration, oxygen consumption rate, and citrate synthase activity in muscle was observed in catalpol treated mice. The antidiabetic activity of catalpol is credited with a marked improvement in insulin sensitivity and mitochondrial respiration through the insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation in the skeletal muscle of T2DM mice.
    Matched MeSH terms: Muscle, Skeletal
  19. Yap CM
    Med J Malaysia, 2005 Aug;60(3):364-6.
    PMID: 16379194
    Restoring the intestinal continuity of an acquired massive cervico-thoracic oesophagus defect is a reconstructive challenge. A case requiring such defect restoration following a failed pedicled colonic interposition bypass graft between the cervical oesophagus and stomach for an intra-thoracic oesophageal perforation is presented. The defect between the oesophagostome at the lower left neck and the stoma of the colonic stump at the lower left chest measured about 20 cm. An ante-thoracic skin-tube neo-esophagus was constructed in two stages using a pedicled contralateral right deltopectoral skin flap and a pedicled ipsilateral island left latissimus dorsi myocutaneous flap (LD MC flap). A normal swallowing mechanism was re-established.
    Matched MeSH terms: Muscle, Skeletal/surgery*
  20. Yammine K, Erić M
    Surg Radiol Anat, 2020 Mar;42(3):259-267.
    PMID: 31741040 DOI: 10.1007/s00276-019-02381-x
    INTRODUCTION: The tendon of the palmaris longus is commonly used as a tendon graft in many reconstructive surgeries. Easy to access and at proximity to the hand, the palmaris longus tendon is considered as the optimal tendon source for hand reconstructive surgery. However, and besides its inconsistency, the size of the palmaris longus tendon is reported to show variability. The aim of this study is to look for the surgical adequacy of the palmaris longus tendon by conducting a quantitative synthesis on its length and width in human populations and its correlation with the forearm length.

    METHODS: Twenty-four studies met the inclusion criteria including 1761 cadaveric limbs.

    RESULTS: The results were as following: (a) the mean palmaris longus tendon length was of 13.9 ± 2.6 cm, (b) the mean ratio palmaris longus tendon length/forearm length was of 0.545 ± 0.06, (c) the weighted correlation value was of 0.686, and (d) the mean palmaris longus tendon width was of 4.0 ± 1.7 mm. Only five studies reported a palmaris longus tendon length of more than 15 cm. The palmaris longus tendon length was shown to vary between ancestries; the Japanese had the shortest while Malaysian the longest palmaris longus tendons. All studies but one reported a palmaris longus tendon mean width of more than 3 mm where the minimal mean palmaris longus tendon width was of 2.5 mm.

    CONCLUSION: While the requested length depends on the recipient site and/or type of reconstructive surgery, the palmaris longus tendon often met the required diameter for grafting. Our review demonstrated that while palmaris longus length varies between ancestries, its width is often adequate for grafting. In addition, the forearm length could be a good predictor of palmaris longus tendon length; such correlation could assist surgeons when planning to use palmaris longus tendon as a graft source.

    Matched MeSH terms: Muscle, Skeletal/anatomy & histology*; Muscle, Skeletal/transplantation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links