Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Wall JR, Wright DJ
    Clin Exp Immunol, 1974 May;17(1):51-9.
    PMID: 4619358
    Testicular germinal cell antibodies were found in forty-four out of the fifty-nine patients with lepromatous leprosy and in four out of ten patients with tuberculoid disease. A similar pattern was found in twelve out of 262 control patients and
    normal subjects. The antibody was found to be of the IgG class and forty out of forty-nine of these antibodies were shown to be complement fixing. Spermatozoal antibodies were detected in twelve patients, but no ovarian antibodies were found in any specimen. There was no close correlation between erythema nodosum leprosum (ENL) and testicular antibodies. It was found that the characteristic of the testicular antibody in leprosy was its ability to be absorbed by Mycobacterium BCG suspension suggesting that this is another antibody induced by infection. A similar fluorescent pattern was seen in some patients who did not have leprosy, but in these cases it could not be abolished with BCG. It is concluded that autoimmunity may be one of the factors involved in the pathogenesis of orchitis in leprosy.
    Study site: MRC Leprosy Research Unit, Sungei Buloh, Selangor, Malaysia.
    Matched MeSH terms: Mycobacterium bovis/immunology
  2. Al-Herz W, Husain EH, Adeli M, Al Farsi T, Al-Hammadi S, Al Kuwaiti AA, et al.
    Pediatr Infect Dis J, 2022 11 01;41(11):933-937.
    PMID: 36102730 DOI: 10.1097/INF.0000000000003678
    AIMS: To present the details of Bacillus Calmette-Guérin (BCG)-vaccine associated complications (VACs) in combined immunodeficiencies (CID) patients.

    METHODS: Five centers participated in this retrospective study and completed a data form, which included general patients' information, clinical and laboratory data.

    RESULTS: Among 236 CID patients, 127 were BCG vaccinated. 41.9% of patients with family history of CID and 17.1% who were diagnosed by screening were BCG vaccinated. Twenty-three patients (18.1%) developed BCG-VACs. The median age of VACs was 6 months and the median time from vaccination to complications was 6 months. The highest rate of BCG-VACs was recorded in patients receiving the Russian BCG strain compared to the Tokyo and Danish strains. Univariate analysis of T-lymphocyte subsets showed increased odds of BCG complications in patients with CD3+, CD4+, and CD8+ counts of ≤250 cells/µL. Only CD8 + count ≤250 cells/µL had increased such odds on multivariate analysis. VACs were disseminated in 13 and localized in 10 patients. Localized complication occurred earlier after vaccination (median: 4 months) compared with disseminated ones (median: 7 months). There were no significant associations between sex, administered vaccine strain, serum immunoglobulins levels, lymphocyte subsets counts, and the chance of having either localized or disseminated BCG-related complications.

    COCLUSIONS: Although contraindicated, many patients with CID continue to be vaccinated with BCG. Low CD8 + count is a risk factor for BCG-related complications and localized complications occurred earlier than disseminated ones. Considerations should be undertaken by health care authorities especially in countries with high incidence of CID to implement newborn screening, delay the time of BCG vaccine administration beyond 6 months of age and to use the relatively safer strains like the Danish and Tokyo ones.

    Matched MeSH terms: Mycobacterium bovis*
  3. Govindarajan KK, Chai FY
    Malays J Med Sci, 2011 Apr;18(2):66-9.
    PMID: 22135589
    Bacille Calmette-Guerin (BCG) vaccination for protection against tuberculosis has been in use for long. Although the vaccine is safe, its administration can result in complications such as BCG adenitis. We report here a series of children with BCG adenitis with a view to recognise and manage this condition. It is hoped that this case series would encourage the increased identification of this condition.
    Study site: Paediatric Surgical Unit, Department of Surgery, Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia
    Matched MeSH terms: Mycobacterium bovis
  4. Umi Kalthum, M.N., Norfarizal, A., Rona Asnida, N., Ayesha, M.Z., Jemaima, C.H.
    Medicine & Health, 2012;7(2):97-101.
    MyJurnal
    A 17-year-old male student of Indonesian parentage presented with two weeks history of progressive painless bilateral visual deterioration. There was no contact with tuberculosis (TB)-infected patients and parents claimed that all immunization including BCG was completed. However, BCG scar was not apparent. Visual acuity was 6/36 and 6/60 in the right and left eyes respectively. The anterior and vitreous chambers were quiet. Funduscopic examination revealed retinal vasculitis with perivascular exudates, branch vein occlusion, neovascularization and macular oedema. Fluorescein angiography confirmed large areas of capillary non-perfusion and leaking new vessels. Mantoux test was positive and full regime anti-TB therapy was instituted. HIV screening was negative. Three days later, an immunosuppressive dose of oral steroid was started. Both eyes received intensive laser photocoagulation.Interestingly, there was no development of vitritis throughout.
    Matched MeSH terms: Mycobacterium bovis
  5. CHIN J
    Tubercle, 1964 Jun;45:114-24.
    PMID: 14161910
    Matched MeSH terms: Mycobacterium bovis*
  6. Suppian R, Zainuddin ZF, Norazmi MN
    Malays J Med Sci, 2006 Jan;13(1):13-20.
    PMID: 22589585
    Mycobacterium bovis bacille Calmette-Guèrin (BCG) represents one of the most promising live vectors for the delivery of foreign antigens to the immune system. A recombinant BCG containing a synthetic gene coding for the malarial epitopes namely, the fragment 2 of region II of EBA-175 (F2R(II)EBA) and the repeat sequence of the circumsporozoite protein NANP generated in favour of mycobacterium codon usage using assembly PCR was constructed. Two T-cell epitopes of the 6-kDa M. tuberculosis early-secreted antigenic target (ESAT-6) antigen were also clone in the same construct. Expression of the synthetic gene was driven by the heat shock protein 65 (hsp65) promoter from M. tuberculosis and the signal peptide from the MPT63 antigen of M. tuberculosis. Expression of the composite epitopes was detected by Western blotting of the cell extract and culture supernatant of the recombinant clones using a specific rabbit polyclonal antibody against F2R(II)EBA. This study demonstrates the possibility of cloning and expressing immunogenic epitopes from causative agents of two important diseases: malaria and tuberculosis (TB) in a single recombinant BCG construct.
    Matched MeSH terms: Mycobacterium bovis
  7. Abdullah M, Suraiya S, Mohamad S, Harun A
    Data Brief, 2020 Aug;31:105949.
    PMID: 32671154 DOI: 10.1016/j.dib.2020.105949
    In this dataset, we report the genome assembly and data analysis of Mycobacterium tuberculosis strain SIT745/EAI1-MYS. Previously, this strain was isolated from a Malaysian patient with extra-pulmonary tuberculosis, and identification of this strain is done by spoligotype patterns with fifteen known Shared International Type (SITs). Further analysis showed that this strain has a remarkable phylogeographical specificity for Malaysia. Based on the National Center for Biotechnology Information (NCBI) nucleotide database information, the complete genome consists of 150 contigs with various sequence lengths and was not assembled. In this assembly, the aforementioned contigs along with reference sequence from Mycobacterium tuberculosis strain H37Rv and Mycobacterium bovis strain AF2122/97 was used for gap closures, were assembled into a single circular chromosome length of approximately 4.42 Mega bases (Mb) with an average GC content of 65.6%. The single circular chromosome was shown to contain 4,009 protein-coding sequences, 3 ribosomal RNAs, 45 transfer RNAs, and 12 superclasses distributed with 277 subsystems which constitute nearly 1900 genes, respectively. The genome information will provide fundamental knowledge of this organism as well as insight for understanding genomic and proteomic profiling, phylogenetic relationship.
    Matched MeSH terms: Mycobacterium bovis
  8. Lekko YM, Che-Amat A, Ooi PT, Omar S, Mohd-Hamdan DT, Linazah LS, et al.
    J Vet Med Sci, 2021 Oct 31;83(11):1702-1707.
    PMID: 34544936 DOI: 10.1292/jvms.21-0144
    Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, affecting several domestic animals, wildlife species and humans. The preliminary investigation was aimed to detect antibody against MTBC among indigenous wildlife which are free-ranged wild boar, free-ranged wild macaques and captive Asian elephants in selected areas of Selangor and elephant conservation centre in Pahang, respectively. The results indicate that MTBC serodetection rate in wild boar was 16.7% (7.3-33.5 at 95% confidence interval (CI)) using an in-house ELISA bPPD IgG and 10% (3.5-25.6 at 95% CI) by DPP®VetTB assay, while the wild macaques and Asian elephant were seronegative. The univariate analysis indicates no statistically significant difference in risk factors for sex and age of wild boar but there was a significant positive correlation (P<0.05) between bovine TB in dairy cattle and wild boar seropositivity in the Sepang district.
    Matched MeSH terms: Mycobacterium bovis*
  9. Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al.
    Braz J Infect Dis, 2014 Nov-Dec;18(6):600-8.
    PMID: 25181404 DOI: 10.1016/j.bjid.2014.05.015
    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
    Matched MeSH terms: Mycobacterium bovis/isolation & purification*
  10. Nadiya T. Al-alusi, Mahmood A. Abdullah
    MyJurnal
    During recent years, extensive development has been made to improving vaccines for tuberculosis. This is due to the presence of genome sequences of diverse mycobacterial species and Mycobacteroum tuberculosis (M. tuberculosis) isolates which has led to advances in the characterization of genes and antigens of M. tb and better realization of protective immune responses to the disease in both animals and humans. This review summarizes vaccine types, reasons for variable efficacy of BCG, latest advances in tuberculosis vaccine development and major vaccine design strategies.
    Matched MeSH terms: Mycobacterium bovis
  11. Tan YZ, Chong YQ, Khong E, Liew YK, Chieng N
    Int J Pharm, 2019 Jul 20;566:400-409.
    PMID: 31136777 DOI: 10.1016/j.ijpharm.2019.05.063
    Live attenuated Mycobacterium bovis (M. bovis), marketed as Bacille Calmette-Guérin is the only FDA-approved vaccine against tuberculosis. The prerequisite of cold chain storage between 2 and 8 °C hinders the global vaccination effort. The study aims to investigate the effect of trehalose, sucrose and glycerol combinations in enhancing the stability of M. bovis. The bacilli were formulated in various ratios of trehalose-glycerol, sucrose-glycerol, trehalose-sucrose-glycerol systems (test samples) and sodium glutamate (control), freeze-dried and stored for 28 days at 4 °C, 25 °C and 37 °C. Bacteria viability at pre-, post-freeze-drying and after storage were quantified by its density in colony-forming unit per milliliter (CFU/mL) as obtained through the pour plate method. Formulations were characterized using differential scanning calorimetry. Structural collapsed cakes were found on all freeze-dried formulations because of the low Tg'. Comparing between binary and ternary formulations, trehalose-sucrose-glycerol was found to be a superior lyoprotectant. Upon storage, the viability of bacteria in disaccharide-polyol formulations was highest when stored at 4 °C followed by 25 °C. The lowest viability was found after storage at 37 °C. While the ternary disaccharide-polyol system may be used as a thermoprotectant up to 25 °C, sodium glutamate has a superior thermoprotective effect at temperature above 25 °C.
    Matched MeSH terms: Mycobacterium bovis/drug effects*
  12. Nurul AA, Norazmi MN
    Parasitol Res, 2011 Apr;108(4):887-97.
    PMID: 21057812 DOI: 10.1007/s00436-010-2130-5
    Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
    Matched MeSH terms: Mycobacterium bovis/genetics*
  13. Mohamad D, Suppian R, Mohd Nor N
    Hum Vaccin Immunother, 2014;10(7):1880-6.
    PMID: 25424796 DOI: 10.4161/hv.28695
    Macrophage phagocytosis is the first line of defense of the innate immune system against malaria parasite infection. This study evaluated the immunomodulatory effects of BCG and recombinant BCG (rBCG) strains expressing the C-terminus of the merozoite surface protein-1 (MSP-1C) of Plasmodium falciparum on mouse macrophage cell line J774A.1 in the presence or absence of lipopolysaccharide (LPS) or LPS + IFN-γ. The rBCG strain significantly enhanced phagocytic activity, production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and inducible nitric oxide synthase (iNOS) as compared with parental BCG strain, and these activities increased in the presence of LPS and LPS+IFN-γ. Furthermore, the rBCG strain also significantly reduced the macrophage viability as well as the rBCG growth suggesting the involvement of macrophage apoptosis. Taken together, these data indicate that the rBCG strain has an immunomodulatory effect on macrophages, thus strengthen the rational use of rBCG to control malaria infection.
    Matched MeSH terms: Mycobacterium bovis/genetics; Mycobacterium bovis/immunology*
  14. Kerner G, Rosain J, Guérin A, Al-Khabaz A, Oleaga-Quintas C, Rapaport F, et al.
    J Clin Invest, 2020 Jun 01;130(6):3158-3171.
    PMID: 32163377 DOI: 10.1172/JCI135460
    Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to clinical disease caused by the Bacille Calmette-Guérin (BCG) vaccine and environmental mycobacteria. The known genetic etiologies of MSMD are inborn errors of IFN-γ immunity due to mutations of 15 genes controlling the production of or response to IFN-γ. Since the first MSMD-causing mutations were reported in 1996, biallelic mutations in the genes encoding IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 have been reported in many patients of diverse ancestries. Surprisingly, mutations of the gene encoding the IFN-γ cytokine itself have not been reported, raising the remote possibility that there might be other agonists of the IFN-γ receptor. We describe 2 Lebanese cousins with MSMD, living in Kuwait, who are both homozygous for a small deletion within the IFNG gene (c.354_357del), causing a frameshift that generates a premature stop codon (p.T119Ifs4*). The mutant allele is loss of expression and loss of function. We also show that the patients' herpesvirus Saimiri-immortalized T lymphocytes did not produce IFN-γ, a phenotype that can be rescued by retrotransduction with WT IFNG cDNA. The blood T and NK lymphocytes from these patients also failed to produce and secrete detectable amounts of IFN-γ. Finally, we show that human IFNG has evolved under stronger negative selection than IFNGR1 or IFNGR2, suggesting that it is less tolerant to heterozygous deleterious mutations than IFNGR1 or IFNGR2. This may account for the rarity of patients with autosomal-recessive, complete IFN-γ deficiency relative to patients with complete IFN-γR1 and IFN-γR2 deficiencies.
    Matched MeSH terms: Mycobacterium bovis/immunology
  15. Fomukong NG, Tang TH, al-Maamary S, Ibrahim WA, Ramayah S, Yates M, et al.
    Tuber. Lung Dis., 1994 Dec;75(6):435-40.
    PMID: 7718832 DOI: 10.1016/0962-8479(94)90117-1
    DNA fingerprinting with the insertion sequence IS6110 (also known as IS986) has become established as a major tool for investigating the spread of tuberculosis. Most strains of Mycobacterium tuberculosis have multiple copies of IS6110, but a small minority carry a single copy only. We have examined selected strains from Malaysia, Tanzania and Oman, in comparison with M. bovis isolates and BCG strains carrying one or two copies of IS6110. The insertion sequence appears to be present in the same position in all these strains, which suggests that in these organisms the element is defective in transposition and that the loss of transposability may have occurred at an early stage in the evolution of the M. tuberculosis complex.
    Matched MeSH terms: Mycobacterium bovis/genetics
  16. Che'Amat A, Armenteros JA, González-Barrio D, Lima JF, Díez-Delgado I, Barasona JA, et al.
    Prev Vet Med, 2016 Dec 01;135:132-135.
    PMID: 27843020 DOI: 10.1016/j.prevetmed.2016.11.002
    We assessed the suitability of targeted removal as a means for tuberculosis (TB) control on an intensely managed Eurasian wild boar (Sus scrofa) hunting estate. The 60km(2) large study area included one capture (treatment) site, one control site, and one release site. Each site was fenced. In the summers of 2012, 2013 and 2014, 929 wild boar were live-captured on the treatment site. All wild boar were micro-chipped and tested using an animal side lateral flow test immediately after capture in order to detect antibodies to the Mycobacterium tuberculosis complex (MTC). The wild boar were released according to their TB status: Seropositive individuals onto the release site (hunted after summer), and seronegative individuals back onto the treatment site. The annual summer seroprevalence of antibodies to the MTC declined significantly in live-captured wild boar piglets from the treatment site, from 44% in 2012 to 27% in 2013 (a reduction of 39%). However, no significant further reduction was recorded in 2014, during the third capture season. Fall-winter MTC infection prevalence was calculated on the basis of the culture results obtained for hunter-harvested wild boar. No significant changes between hunting seasons were recorded on either the treatment site or the control site, and prevalence trends over time were similar on both sites. The fall-winter MTC infection prevalence on the release site increased significantly from 40% in 2011-2012 to 64% in 2012-2013 and 2013-2014 (60% increase). Recaptures indicated a persistently high infection pressure. This experiment, the first attempt to control TB in wild boar through targeted removal, failed to reduce TB prevalence when compared to the control site. However, it generated valuable knowledge on infection pressure and on the consequences of translocating TB-infected wild boar.
    Matched MeSH terms: Mycobacterium bovis/physiology*
  17. Devi KR, Lee LJ, Yan LT, Syafinaz AN, Rosnah I, Chin VK
    Int Arch Occup Environ Health, 2021 08;94(6):1147-1171.
    PMID: 33725176 DOI: 10.1007/s00420-021-01677-z
    Zoonotic tuberculosis caused by Mycobacterium bovis (M. bovis), a member of Mycobacterium tuberculosis complex (MTBC) has increasingly gathered attention as a public health risk, particularly in developing countries with higher disease prevalence. M. bovis is capable of infecting multiple hosts encompassing a number of domestic animals, in particular cattle as well as a broad range of wildlife reservoirs. Humans are the incidental hosts of M. bovis whereby its transmission to humans is primarily through the consumption of cattle products such as unpasteurized milk or raw meat products that have been contaminated with M. bovis or the transmission could be due to close contact with infected cattle. Also, the transmission could occur through aerosol inhalation of infective droplets or infected body fluids or tissues in the presence of wound from infected animals. The zoonotic risk of M. bovis in humans exemplified by miscellaneous studies across different countries suggested the risk of occupational exposure towards M. bovis infection, especially those animal handlers that have close and unreserved contact with cattle and wildlife populations These animal handlers comprising of livestock farmers, abattoir workers, veterinarians and their assistants, hunters, wildlife workers as well as other animal handlers are at different risk of contracting M. bovis infection, depending on the nature of their jobs and how close is their interaction with infected animals. It is crucial to identify the underlying transmission risk factors and probable transmission pathways involved in the zoonotic transmission of M. bovis from animals to humans for better designation and development of specific preventive measures and guidelines that could reduce the risk of transmission and to protect these different occupational-related/populations at risk. Effective control and disease management of zoonotic tuberculosis caused by M. bovis in humans are also hindered by various challenges and factors involved at animal-human interface. A closer look into factors affecting proper disease control and management of M. bovis are therefore warranted. Hence, in this narrative review, we have gathered a number of different studies to highlight the risk of occupational exposure to M. bovis infection and addressed the limitations and challenges underlying this context. This review also shed lights on various components and approaches in tackling M. bovis infection at animal-human interface.
    Matched MeSH terms: Mycobacterium bovis*
  18. Rapeah S, Dhaniah M, Nurul AA, Norazmi MN
    Trop Biomed, 2010 Dec;27(3):461-9.
    PMID: 21399587 MyJurnal
    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.
    Matched MeSH terms: Mycobacterium bovis/genetics; Mycobacterium bovis/immunology*
  19. Nurul AA, Rapeah S, Norazmi MN
    Trop Biomed, 2010 Apr;27(1):60-7.
    PMID: 20562815
    Proteins on the surface of Plasmodium falciparum merozoites are good targets for vaccine development against malaria because they are accessible to antibodies in the plasma. The 19 kDa C-terminus of merozoite surface protein-1 (MSP-1(19)) has been shown to induce both inhibitory as well as blocking antibodies, the latter blocking the protective effects of the former. Inhibitory antibodies bind to MSP-1(19) and inhibit merozoite invasion of red blood cells (RBC) but the binding of blocking antibodies can prevent binding of inhibitory antibodies thereby allowing the parasite to invade RBC. We constructed a synthetic version of the MSP-1(19) of the P. falciparum using mycobacterium codon usage by assembly PCR. The synthetic MSP-1(19) was mutated at various sites to promote the production of inhibitory but not blocking antibodies as previously reported. The native and mutated MSP-1(19) were cloned and expressed in Mycobacterium bovis bacille Calmette-Guerin (BCG) and the expressions of the recombinant proteins were detected by specific monoclonal antibodies (mAbs) namely, 12.10 and 1E1 against MSP-1(19) using Western blotting. The mutated MSP-1(19) protein reacted with the inhibitory mAb, 12.10, but not the blocking mAb, 1E1, paving the way for the construction of a potential recombinant BCG (rBCG) blood stage vaccine against malaria.
    Matched MeSH terms: Mycobacterium bovis/genetics; Mycobacterium bovis/metabolism*
  20. Sodhy JS
    Med J Malaysia, 1963 Sep;18:38-41.
    PMID: 14064295
    Matched MeSH terms: Mycobacterium bovis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links