Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  2. Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, et al.
    Molecules, 2021 Mar 26;26(7).
    PMID: 33810292 DOI: 10.3390/molecules26071870
    Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  3. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  4. Tan KX, Danquah MK, Sidhu A, Lau SY, Ongkudon CM
    Biotechnol Prog, 2018 01;34(1):249-261.
    PMID: 28699244 DOI: 10.1002/btpr.2524
    Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease-mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer-immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi-layer co-polymeric targeted drug delivery system based on drug-loaded PLGA-Aptamer-PEI (DPAP) formulation with a stage-wise delivery mechanism. A thrombin-specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ∼0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249-261, 2018.
    Matched MeSH terms: Nanoparticles/therapeutic use
  5. Walvekar S, Anwar A, Anwar A, Lai NJY, Yow YY, Khalid M, et al.
    J Parasitol, 2021 07 01;107(4):537-546.
    PMID: 34265050 DOI: 10.1645/21-41
    Nanomedicine has the potential in enhancing the efficacy and bioavailability of anti-infective agents. Here we determined whether conjugation of the Malaysian cultivated seaweed Kappaphycus alvarezii with silver-conjugated nanoparticles enhanced anti-acanthamoebic properties. Silver-conjugated K. alvarezii were successfully synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and transmission electron microscopy. Amoebicidal effects were evaluated against Acanthamoeba castellanii, and cytotoxicity assays were performed using HaCaT cells. Viability assays revealed that silver nanoparticles conjugated with K. alvarezii extract exhibited significant antiamoebic properties (P < 0.05). Nano-conjugates induced the production of reactive oxygen species. Importantly, silver-conjugated extract inhibited amoeba-mediated host cell damage as established by lactate dehydrogenase release. Neither the nano-conjugates nor the extract showed cytotoxicity against human cells in vitro. Liquid chromatography and mass spectroscopy revealed several molecules, including 2,6-nonadien-1-ol, N-desmethyl trifluoperazine, dulciol B, lucidumol A, acetoxolone, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, C16 sphinganine, 22-tricosenoic acid, and β-dihydrorotenone, of which dulciol B and C16 sphinganine are known to possess antimicrobial activities. In summary, marine organisms are an important source of bioactive molecules with anti-acanthamoebic properties that can be enhanced by conjugating with silver nanoparticles. Natural products combined with nanotechnology using multifunctional nanoparticle complexes can deliver therapeutic agents effectively and hold promise in the development of new formulations of anti-acanthamoebic agents.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  6. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  7. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V
    Drug Discov Today, 2019 07;24(7):1405-1412.
    PMID: 31102731 DOI: 10.1016/j.drudis.2019.05.004
    Lyotropic nonlamellar liquid crystalline nanoparticles (NPs) (LCN), such as cubosomes and hexosomes, are useful tools for applications in drug delivery because of their unique structural properties. LCNs are highly versatile carriers that can be applied for use with topical, oral, and intravenous treatments. In recent years, significant research has focused on improving their preparation and characterization, including controlling drug release and enhancing the efficacy of loaded bioactive molecules. Nevertheless, the clinical translation of LCN-based carriers has been slow. In this review, we highlight recent advances and challenges in the development and application of LCN, providing examples of their topical, oral, and intravenous drug delivery applications, and discussing translational obstacles to LCN as a NP technology.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  8. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al.
    J Control Release, 2019 05 10;301:176-189.
    PMID: 30849445 DOI: 10.1016/j.jconrel.2019.02.016
    Macromolecular protein and peptide therapeutics have been proven to be effective in treating critical human diseases precisely. Thanks to biotechnological advancement, a huge number of proteins and peptide therapeutics were made their way to pharmaceutical market in past few decades. However, one of the biggest challenges to be addressed for protein therapeutics during clinical application is their fast degradation in serum and quick elimination owing to enzymatic degradation, renal clearance, liver metabolism and immunogenicity, attributing to the short half-lives. Size and hydrophobicity of protein molecules make them prone to kidney filtration and liver metabolism. On the other hand, proteasomes responsible for protein destruction possess the capability of specifically recognizing almost all kinds of foreign proteins while avoiding any unwanted destruction of cellular components. At present almost all protein-based drug formulations available in market are administered intravenously (IV) or subcutaneously (SC) with high dosing at frequent interval, eventually creating dose-fluctuation-related complications and reducing patient compliance vastly. Therefore, artificially increasing the therapeutic half-life of a protein by attaching to it a molecule that increases the overall size (eg, PEG) or helps with receptor mediated recycling (eg, albumin), or manipulating amino acid chain in a way that makes it more prone towards aggregate formation, are some of the revolutionary approaches to avoid the fast degradation in vivo. Half-life extension technologies that are capable of dramatically enhancing half-lives of proteins in circulation (2-100 folds) and thus improving their overall pharmacokinetic (PK) parameters have been successfully applied on a wide range of protein therapeutics from hormones and enzymes, growth factor, clotting factor to interferon. The focus of the review is to assess the technological advancements made so far in enhancing circulatory half-lives and improving therapeutic potency of proteins.
    Matched MeSH terms: Nanoparticles/therapeutic use
  9. Kusrini E, Sabira K, Hashim F, Abdullah NA, Usman A, Putra N, et al.
    Acta Ophthalmol, 2021 Mar;99(2):e178-e188.
    PMID: 32701190 DOI: 10.1111/aos.14541
    PURPOSE: Contact lenses have direct contact with the corneal surface and can induce sight-threatening infection of the cornea known as Acanthamoeba keratitis. The objective of this study was to evaluate the dysprosium-based nanoparticles (Dy-based NPs), namely Fe3 O4 -PEG-Dy2 O3 nanocomposites and Dy(OH)3 nanorods, as an active component against Acanthamoeba sp., as well as the possibility of their loading onto contact lenses as the drug administering vehicle to treat Acanthamoeba keratitis (AK).

    METHODS: The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays.

    RESULTS: The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2  hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively.

    CONCLUSIONS: Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).

    Matched MeSH terms: Nanoparticles/therapeutic use*
  10. Mohammad F, Yusof NA
    J Colloid Interface Sci, 2014 Nov 15;434:89-97.
    PMID: 25170601 DOI: 10.1016/j.jcis.2014.07.025
    In the present work, nanohybrid of an anticancer drug, doxorubicin (Dox) loaded gold-coated superparamagnetic iron oxide nanoparticles (SPIONs@Au) were prepared for a combination therapy of cancer by means of both hyperthermia and drug delivery. The Dox molecules were conjugated to SPIONs@Au nanoparticles with the help of cysteamine (Cyst) as a non-covalent space linker and the Dox loading efficiency was investigated to be as high as 0.32 mg/mg. Thus synthesized particles were characterized by HRTEM, UV-Vis, FT-IR, SQUID magnetic studies and further tested for heat and drug release at low frequency oscillatory magnetic fields. The hyperthermia studies investigated to be strongly influenced by the applied frequency and the solvents used. The Dox delivery studies indicated that the drug release efficacy is strongly improved by maintaining the acidic pH conditions and the oscillatory magnetic fields, i.e. an enhancement in the Dox release was observed from the oscillation of particles due to the applied frequency, and is not effected by heating of the solution. Finally, the in vitro cell viability and proliferation studies were conducted using two different immortalized cell lines containing a cancerous (MCF-7 breast cancer) and non-cancerous H9c2 cardiac cell type.
    Matched MeSH terms: Magnetite Nanoparticles/therapeutic use*
  11. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Nanoparticles/therapeutic use
  12. Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM
    Mol Pharm, 2021 09 06;18(9):3302-3325.
    PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248
    Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  13. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  14. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M, et al.
    Trends Biotechnol, 2017 11;35(11):1074-1087.
    PMID: 28734545 DOI: 10.1016/j.tibtech.2017.06.015
    Over the last decade, numerous investigations have attempted to clarify the intricacies of tumor development to propose effective approaches for cancer treatment. Thanks to the unique properties of hydrogels, researchers have made significant progress in tumor model reconstruction, tumor diagnosis, and associated therapies. Notably, hydrogel-based systems can be adjusted to respond to cancer-specific hallmarks and/or external stimuli. These well-known drug reservoirs can be used as smart carriers for multiple cargos, including both naked and nanoparticle-encapsulated chemotherapeutics, genes, and radioisotopes. Recent works have attempted to specialize hydrogels for cancer research; we comprehensively review this topic for the first time, synthesizing past results and defining paths for future work.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  15. Zhang T, Dang M, Zhang W, Lin X
    J. Photochem. Photobiol. B, Biol., 2020 Jan;202:111705.
    PMID: 31812087 DOI: 10.1016/j.jphotobiol.2019.111705
    The procurance of gold nanoparticles in the plant extracts is an excellent way to attain nanomaterials natural and eco-friendly nanomaterials. The Dehydrated roots of Chinese Euphorbia fischeriana flowering plant are called "Lang-Du". In this study, the retrieving of gold nanoparticles from Euphorbia fischeriana root was amalgamated by standard procedure. Fabricated gold nanoparticles were portrayed through the investigations of ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The UV-Vis and FTIR results explicated the obtained particles were sphere-shaped and the terpenoids of Euphorbia fischeriana had strong communications with gold surface. The HRTEM and XRD images exposed the produced gold nanoparticles had an extreme composition of crystal arrangement and excellent uniformed size of particles. In our study, the Isoprenaline induced myocardial damage established the elevation in TBARS, LOOH of heart tissues and notable decline in antioxidant enzymes SOD, CAT, GPx, and GSH. This biochemical result was additionally proved by histopathological assessment. Remarkably, the pretreatment with EF-AuNps(50 mg/kg b.w) illustrated stabilized levels of serum creatine and cardiotropins in myocardial infarcted animals. And further we understood the essential function of NF-ƙB, TNF-α, IL-6 signaling molecules and its way progression in the development of vascular tenderness.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  16. Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G
    Int J Biol Macromol, 2018 Feb;107(Pt A):436-445.
    PMID: 28888547 DOI: 10.1016/j.ijbiomac.2017.09.011
    Carbon dioxide assisted particle formation combined with electrospraying using supercritical CO2 (scCO2) as an aid (Carbon Dioxide Assisted Nebulization-Electrodeposition, CAN-ED) was used to produce Bortezomib loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) nanoparticles for sustained release. The morphology and structure of the prepared nanoparticles were investigated by SEM, TEM and FT-IR spectroscopy. Average diameter of particles obtained was 155nm and the average core sizes of P(3HB-co-3HHx) nanoparticles were between 6 and 13nm. The drug loading capacity, drug release and stability of Bortezomib loaded P(3HB-co-3HHx) nanoparticles were analyzed. The maximum loading capacity was achieved at pH=6.0 in phosphate buffer (K2HPO4/KH2PO4). It was found that temperature did not affect the stability of Bortezomib loaded nanoparticles and it was good both at 37°C and 4°C. This study pointed out that CAN-ED is a green method to produce P(3HB-co-3HHx) nanoparticles for pH responsive targeting of Bortezomib especially to parts of the body where size exclusion is not crucial.
    Matched MeSH terms: Nanoparticles/therapeutic use
  17. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    Matched MeSH terms: Nanoparticles/therapeutic use
  18. Anwar A, Soomaroo A, Anwar A, Siddiqui R, Khan NA
    Exp Parasitol, 2020 Aug;215:107915.
    PMID: 32461112 DOI: 10.1016/j.exppara.2020.107915
    Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 μM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 μM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  19. Idris FN, Nadzir MM
    Arch Microbiol, 2023 Mar 14;205(4):115.
    PMID: 36917278 DOI: 10.1007/s00203-023-03455-6
    Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  20. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links