Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Fadeeva Z, Van Berkel R
    J Environ Manage, 2021 Jan 01;277:111457.
    PMID: 33045648 DOI: 10.1016/j.jenvman.2020.111457
    Marine plastic pollution (MPP) is an urgent environmental and socio-economic problem. MPP amounts to 300 million tons annually, originates largely from land-based sources and severely impacts marine ecosystem, harms livelihoods and causes costs for businesses and governments. Plastics permeate the whole width and depth of seas and oceans, near well-developed coastal zones and equally in remotest corners. This undermines economic and social value of the oceans, particularly in terms of fisheries productivity and tourism. The G20 members, responsible for about two-thirds of global plastic waste, recognize the problem and undertake preventive measures - individually and collectively. Yet, are there efficient, effective and sufficient given the urgency of MPP and the contribution of G20 countries. This article highlights existing policies and identifies further policy options using a custom framework for MPP policy that merges Circular Economy (CE) and life-cycle perspectives.
    Matched MeSH terms: Oceans and Seas
  2. Fattah S, Gani A, Ahmedy I, Idris MYI, Targio Hashem IA
    Sensors (Basel), 2020 Sep 21;20(18).
    PMID: 32967124 DOI: 10.3390/s20185393
    The domain of underwater wireless sensor networks (UWSNs) had received a lot of attention recently due to its significant advanced capabilities in the ocean surveillance, marine monitoring and application deployment for detecting underwater targets. However, the literature have not compiled the state-of-the-art along its direction to discover the recent advancements which were fuelled by the underwater sensor technologies. Hence, this paper offers the newest analysis on the available evidences by reviewing studies in the past five years on various aspects that support network activities and applications in UWSN environments. This work was motivated by the need for robust and flexible solutions that can satisfy the requirements for the rapid development of the underwater wireless sensor networks. This paper identifies the key requirements for achieving essential services as well as common platforms for UWSN. It also contributes a taxonomy of the critical elements in UWSNs by devising a classification on architectural elements, communications, routing protocol and standards, security, and applications of UWSNs. Finally, the major challenges that remain open are presented as a guide for future research directions.
    Matched MeSH terms: Oceans and Seas
  3. Teh LC, Teh LS
    Environ Manage, 2011 Apr;47(4):536-45.
    PMID: 21359523 DOI: 10.1007/s00267-011-9645-0
    Marine spatial planning tends to prioritise biological conservation targets over socio-economic considerations, which may incur lower user compliance and ultimately compromise management success. We argue for more inclusion of human dimensions in spatial management, so that outcomes not only fulfill biodiversity and conservation objectives, but are also acceptable to resource users. We propose a fuzzy logic framework that will facilitate this task- The protected area suitability index (PASI) combines fishers' spatial preferences with biological criteria to assess site suitability for protection from fishing. We apply the PASI in a spatial evaluation of a small-scale reef fishery in Sabah, Malaysia. While our results pertain to fishers specifically, the PASI can also be customized to include the interests of other stakeholders and resource users, as well as incorporate varying levels of protection.
    Matched MeSH terms: Oceans and Seas
  4. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Oceans and Seas
  5. Jensen K
    Syst Parasitol, 2006 Jun;64(2):117-23.
    PMID: 16612652
    A new lecanicephalidean species of Aberrapex Jensen, 2001 is described from the blue-spotted fantail ray Taeniura lymma (Forsskål) collected off the eastern coast of Sabah in Malaysian Borneo. This is the first record of a lecanicephalidean tapeworm from the island of Borneo and the first record of Aberrapex from this host species. A. manjajiae n. sp. is easily distinguished from its two congeners, A. senticosus Jensen, 2001 and A. arrhynchum (Brooks, Mayes & Thorson, 1981) Jensen, 2001, based on its overall smaller size (928-1,971 vs 1,485-6,333 and up to 3,350 microm long, respectively) and fewer testes (10-19 vs 20-40 and 18-25, respectively). In addition, A. manjajiae n. sp. is readily distinguished from A. senticosus based on a more anteriorly positioned genital pore (76-85 vs 52-72% of proglottid length from posterior end) and its distal bothridial microthrix pattern. A. manjajiae n. sp. can be further distinguished from A. arrhynchum based on its smaller scolex (82-101 x 119-164 vs 177-186 x 233-326 microm). The host distribution of Aberrapex is expanded from the Myliobatidae to include the Dasyatidae.
    Matched MeSH terms: Oceans and Seas
  6. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Oceans and Seas
  7. Chow CH, Cheah W, Tai JH, Liu SF
    Sci Rep, 2019 10 29;9(1):15550.
    PMID: 31664110 DOI: 10.1038/s41598-019-51989-x
    In summer 2010, a massive bloom appeared in the middle (16-25°N, 160-200°E) of the North Pacific Subtropical Gyre (NPSG) creating a spectacular oasis in the middle of the largest oceanic desert on Earth. Peaked in June 2010 covering over two million km2 in space, this phytoplankton bloom is the largest ever recorded by ocean color satellites in the NPSG over the period from 1997 to 2013. The initiation and mechanisms sustaining the massive bloom were due to atmospheric and oceanic anomalies. Over the north (25-30°N) of the bloom, strong anticyclonic winds warmed sea surface temperature (SST) via Ekman convergence. Subsequently, anomalous westward ocean currents were generated by SST meridional gradients between 19°N and 25°N, producing strong velocity shear that caused large number of mesoscale (100-km in order) cyclonic eddies in the bloom region. The ratio of cyclonic to anticyclonic eddies of 2.7 in summer 2010 is the highest over the 16-year study period. As a result of the large eddy-number differences, eddy-eddy interactions were strong and induced submesoscale (smaller than 100 km) vertical pumping as observed in the in-situ ocean profiles. The signature of vertical pumping was also presented in the in-situ measurements of chlorophyll and nutrients, which show higher concentrations in 2010 than other years.
    Matched MeSH terms: Oceans and Seas
  8. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Oceans and Seas
  9. Hussein HA, Abdullah MA
    Mar Drugs, 2020 Jul 09;18(7).
    PMID: 32660006 DOI: 10.3390/md18070356
    Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms' microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated.
    Matched MeSH terms: Oceans and Seas
  10. Tan, Soon Guan
    MyJurnal
    The world’s biodiversity is not distributed uniformly throughout the globe. Some areas such as the tropical rainforests, seas and coral reefs teem with the varieties of life whereas others such as some deserts and polar regions are almost devoid of them (Gaston, 2000). Malaysia, with her tropical jungles and seas, is rich with biodiversity. She is fortunate to have had eminent pioneers such as Ridley (1967), Corner (1972), Soepadmo (1972) and Whitmore (1983) to study her flora and Medway (1968) and Lim (1991) to study her fauna taxonomy. Other pioneers in Malaysian biology included Berry, Dhaliwal and Mohsin. These pioneers are then ably followed by workers such as Latiff, Kiew, Go, Khoo, Davidson, Saberi, Omar, Jambari, Idris, Zekri, Teo, Marziah, Tan, Mukherjee, Shapor, Yusoff, Azmi and many others studying the various subdisciplines of biology. In addition to the more obvious large plants and animals, microorganisms and aquatic organisms had not been neglected either. Workers such as Nawawi, Verghese, Ho and Faridah are known
    for their work on fungi while Fatimah, Phang, Japar and Anton had studied algae, seaweeds, diatoms and seagrasses. However, some of these workers have now either retired or are soon going to attain retirement age and the worrying part is that there are not many younger
    workers keen to pursue research in taxonomy and biosystematics, a prerequisite to further studies in ecology, genetics, biotechnology which in turn are prerequisites for rational conservation, management and sustainable utilization of our rich biological resources. With each passing day species are becoming extinct sometimes without us even knowing that they had ever existed. Even in a developed country such as the USA, one third of her plant and animal species are at risk of extinction (McCann, 2000). Hence, taxonomic and biosystematic studies of our plants, animals and microbes whether terrestrial or aquatic, freshwater and marine, should be priority areas. So should studies on their reproductive biology, life cycles, physiology, feeding habits, migration patterns, predators and their sensitivities to environmental changes.
    Matched MeSH terms: Oceans and Seas
  11. Kanniah KD, Kamarul Zaman NAF, Kaskaoutis DG, Latif MT
    Sci Total Environ, 2020 Sep 20;736:139658.
    PMID: 32492613 DOI: 10.1016/j.scitotenv.2020.139658
    Since its first appearance in Wuhan, China at the end of 2019, the new coronavirus (COVID-19) has evolved a global pandemic within three months, with more than 4.3 million confirmed cases worldwide until mid-May 2020. As many countries around the world, Malaysia and other southeast Asian (SEA) countries have also enforced lockdown at different degrees to contain the spread of the disease, which has brought some positive effects on natural environment. Therefore, evaluating the reduction in anthropogenic emissions due to COVID-19 and the related governmental measures to restrict its expansion is crucial to assess its impacts on air pollution and economic growth. In this study, we used aerosol optical depth (AOD) observations from Himawari-8 satellite, along with tropospheric NO2 column density from Aura-OMI over SEA, and ground-based pollution measurements at several stations across Malaysia, in order to quantify the changes in aerosol and air pollutants associated with the general shutdown of anthropogenic and industrial activities due to COVID-19. The lockdown has led to a notable decrease in AOD over SEA and in the pollution outflow over the oceanic regions, while a significant decrease (27% - 30%) in tropospheric NO2 was observed over areas not affected by seasonal biomass burning. Especially in Malaysia, PM10, PM2.5, NO2, SO2, and CO concentrations have been decreased by 26-31%, 23-32%, 63-64%, 9-20%, and 25-31%, respectively, in the urban areas during the lockdown phase, compared to the same periods in 2018 and 2019. Notable reductions are also seen at industrial, suburban and rural sites across the country. Quantifying the reductions in major and health harmful air pollutants is crucial for health-related research and for air-quality and climate-change studies.
    Matched MeSH terms: Oceans and Seas
  12. LIEW YOU EN, SALWANI ABDULLAH, TAN MIN PAU, MAZLAN ABD GHAFFAR, ALIAS MAN, TUN NURUL AIMI MAT JAAFAR
    MyJurnal
    DNA Barcoding, primarily focusing on cytochrome coxidase subunit I (COI) gene has been appraised as an effective tool for species identification. Nonetheless, species identification based on molecular approach is essential for discrimination of look-alike species. In this study, we focused on the marine fishes Family Nemipteridae, one of the commercially important group distributed within the surrounding seas of Malaysia. Some of the samples were collected during the National Demersal Trawl Survey in the Exclusive Economic Zone of East Coast Peninsular Malaysia by the Department of Fishery Malaysia. A 652bp region of COI was sequenced for 74 individuals from nine putative species. Additional 34 COIsequences from GenBank were also included in this study making the total number of samples analysed to 108 individuals. The averageKimura 2-parameter (K2P) nucleotide divergence was 0.34% among individuals within species and 6.97% within genera. All putative species formed monophyletic clades in both Neighbour-joining (NJ) and Maximum-likelihood (ML) trees. However, there was a potential misidentification in specimen identified as Nemipterus tambuloides,as the specimen did not group with their own taxa. It was genetically grouped in Nemipterus thosaporni clade. This study supports the effectiveness of COIgene in species discrimination of Family Nemipteridae.
    Matched MeSH terms: Oceans and Seas
  13. Tan WS, Yunos NY, Tan PW, Mohamad NI, Adrian TG, Yin WF, et al.
    Sensors (Basel), 2014;14(7):12104-13.
    PMID: 25006994 DOI: 10.3390/s140712104
    N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10 HSL) through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33.
    Matched MeSH terms: Oceans and Seas
  14. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Oceans and Seas
  15. Levin LA, Wei CL, Dunn DC, Amon DJ, Ashford OS, Cheung WWL, et al.
    Glob Chang Biol, 2020 09;26(9):4664-4678.
    PMID: 32531093 DOI: 10.1111/gcb.15223
    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
    Matched MeSH terms: Oceans and Seas
  16. Segura AM, Calliari D, Lan BL, Fort H, Widdicombe CE, Harmer R, et al.
    Ecol Lett, 2017 04;20(4):471-476.
    PMID: 28239940 DOI: 10.1111/ele.12749
    Determining statistical patterns irrespective of interacting agents (i.e. macroecology) is useful to explore the mechanisms driving population fluctuations and extinctions in natural food webs. Here, we tested four predictions of a neutral model on the distribution of community fluctuations (CF) and the distributions of persistence times (APT). Novel predictions for the food web were generated by combining (1) body size-density scaling, (2) Taylor's law and (3) low efficiency of trophic transference. Predictions were evaluated on an exceptional data set of plankton with 15 years of weekly samples encompassing c. 250 planktonic species from three trophic levels, sampled in the western English Channel. Highly symmetric non-Gaussian distributions of CF support zero-sum dynamics. Variability in CF decreased while a change from an exponential to a power law distribution of APT from basal to upper trophic positions was detected. Results suggest a predictable but profound effect of trophic position on fluctuations and extinction in natural communities.
    Matched MeSH terms: Oceans and Seas
  17. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: Oceans and Seas
  18. Gan HM, Hudson AO, Rahman AY, Chan KG, Savka MA
    BMC Genomics, 2013;14:431.
    PMID: 23809012 DOI: 10.1186/1471-2164-14-431
    Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures.
    Matched MeSH terms: Oceans and Seas*
  19. Mazhar R, Shazili NA, Harrison FS
    Parasitol Res, 2014 Oct;113(10):3737-43.
    PMID: 25115732 DOI: 10.1007/s00436-014-4039-x
    In February 2013, forty-seven Notched threadfin bream, the Nemipterus peronii, were sampled from the eastern coastal waters of the South China Sea. The concentration of various elements, namely cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), strontium (Sr), manganese (Mn), selenium (Se), Lead (Pb), nickel (Ni), aluminum (Al), arsenic (As), iron (Fe), and Zinc (Zn) were analyzed in the liver, muscle, and kidney organs of the host, as well as in their parasites Hysterothalycium reliquens (nematode) and the Paraphilometroides nemipteri (nematode), using inductively coupled plasma mass spectrometry (ICP-MS). The former group of parasites showed highest accumulation capacity for Cr, Cu, Fe, Mn, Se, Ni, and Zn while the latter group had high accumulation potential of As, Hg, Cd, Al, Pb, and Sr. The divergence in heavy-metal accumulation profiles of both nematodes is linked with the specificity of microhabitats, cuticle morphology, and interspecific competition. The outcome of this study indicates that both parasite models can be used for biomonitoring of metal pollution in marine ecosystems.
    Matched MeSH terms: Oceans and Seas
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links