Displaying publications 1 - 20 of 117 in total

Abstract:
Sort:
  1. A. N. Azahari, N. D.M Yusob, H.A. Saidun, N.K.Y Ali, R. Abdullah, R. Hashim, et al.
    MyJurnal
    Introduction: Various phantom with varied materials has been proposed to replace the human body. Besides, there is always a demand to use the local material as a phantom material, which is readily available and inexpensive. Wood is usually preferred because it is multifunction, environmentally friendly, low in toxic, inexpensive, as well as easy to use and prepare. Previous studies have found that Rhizophora spp. is a suitable natural source material and has been suggested due to its comparable dosimetric properties to commercial phantom. Methods: In this study, fabricated Rhizophora spp. particleboards phantom was opted as a solid-equivalent phantom medium at low energy photon beams using Gafchromic film x-ray quality assurance 2 (XRQA2). Additionally, the characteristics of XRQA2 film in the diagnostic energy range were generated. Results: Interestingly, the density of the fabricated Rhizophora spp particleboards was observed to have the same density with the water equivalent material (ρ= 1.00 g.cm-3) and has shown to have loosened agreement with PDD of water phantom at approximately 25% of the dose error. Also, further analysis using XRQA 2 film showed that energy was independent at different ranges. Conclusion: The analysis of fabricated Rhizophora spp particleboards undertaken here has extended our knowledge of the possibility of man- ufacturing cost-effective water equivalent phantom by using binder-less particleboard from Rhizophora spp. There- fore, a definite need for smaller interspacing particles should be considered to elevate the potential of Rhizophora spp particle boards as water equivalent materials.
    Matched MeSH terms: Phantoms, Imaging
  2. Abd Rahman NH, Yamada Y, Amin Nordin MS
    Materials (Basel), 2019 May 19;12(10).
    PMID: 31109128 DOI: 10.3390/ma12101636
    Previous works have shown that wearable antennas can operate ideally in free space; however, degradation in performance, specifically in terms of frequency shifts and efficiency was observed when an antenna structure was in close proximity to the human body. These issues have been highlighted many times yet, systematic and numerical analysis on how the dielectric characteristics may affect the technical behavior of the antenna has not been discussed in detail. In this paper, a wearable antenna, developed from a new electro-textile material has been designed, and the step-by-step manufacturing process is presented. Through analysis of the frequency detuning effect, the on-body behavior of the antenna is evaluated by focusing on quantifying the changes of its input impedance and near-field distribution caused by the presence of lossy dielectric material. When the antenna is attached to the top of the body fat phantom, there is an increase of 17% in impedance, followed by 19% for the muscle phantom and 20% for the blood phantom. These phenomena correlate with the electric field intensities (V/m) observed closely at the antenna through various layers of mediums (z-axis) and along antenna edges (y-axis), which have shown significant increments of 29.7% in fat, 35.3% in muscle and 36.1% in blood as compared to free space. This scenario has consequently shown that a significant amount of energy is absorbed in the phantoms instead of radiated to the air which has caused a substantial drop in efficiency and gain. Performance verification is also demonstrated by using a fabricated human muscle phantom, with a dielectric constant of 48, loss tangent of 0.29 and conductivity of 1.22 S/m.
    Matched MeSH terms: Phantoms, Imaging
  3. Abdul Razak HR, Shaffiq Said Rahmat SM, Md Saad WM
    Quant Imaging Med Surg, 2013 Oct;3(5):256-61.
    PMID: 24273743 DOI: 10.3978/j.issn.2223-4292.2013.10.04
    The study aimed to investigate the effects of different tube potentials and concentrations of iodinated contrast media (CM) on the image enhancement, contrast-to-noise ratio (CNR) and noise in micro-computed tomography (µCT) images. A phantom containing of five polyethylene tube was filled with 2 mL of deionized water and iodinated CM (Omnipaque 300 mgI/mL) at four different concentrations: 5, 10, 15, and 20 mol/L, respectively. The phantom was scanned with a µCT machine (SkyScan 1176) using various tube potentials: 40, 50, 60, 70, 80, and 90 kVp, a fixed tube current; 100 µA, and filtration of 0.2 mm aluminum (Al). The percentage difference of image enhancement, CNR and noise of all images, acquired at different kVps and concentrations, were calculated. The image enhancement, CNR and noise curves with respect to tube potential and concentration were plotted and analysed. The highest image enhancement was found at the lowest tube potential of 40 kVp. At this kVp setting, the percentage difference of image enhancement [Hounsfield Unit (HU) of 20 mol/L iodine concentration over HU of deionized water] was 43%. By increasing the tube potential, it resulted with the reduction of HU, where only 17.5% different were noticed for 90 kVp. Across all iodine concentrations (5-20 M), CNR peaked at 80 kVp and then these values showed a slight decreasing pattern, which might be due insufficient tube current compensation. The percentage difference of image noise obtained at 40 and 90 kVp was 72.4%. Lower tube potential setting results in higher image enhancement (HU) in conjunction with increasing concentration of iodinated CM. Overall, the tube potential increment will substantially improve CNR and reduce image noise.
    Matched MeSH terms: Phantoms, Imaging
  4. Abdullah BJ, Mohd Yusof MY, Khoo BH
    Clin Radiol, 1998 Mar;53(3):212-4.
    PMID: 9528873
    Nosocomial infections are posing an increasingly serious problem in the hospital setting. With the increasing use of ultrasound in medical diagnosis, there is the potential for transmission of nosocomial infections via the ultrasound transducer and coupling gel. We evaluated the use of different membranes (three types of commercially available household cling film, condom, surgical glove and Opsite) applied over the ultrasound probe to determine if these were safe, convenient, cost-effective and did not impair the performance parameters of the ultrasound probe. None of the membranes impaired the physical scanning parameters using a Multi-Purpose Tissue/Cyst Phantom. The cling film was ideal for general use in terms of cost and convenience as well as safety. For sterile use the Opsite was better overall compared to the surgical glove, though it costs significantly more. The condom and surgical glove, though safe, were not very convenient to use for scanning.
    Matched MeSH terms: Phantoms, Imaging
  5. Abdullah KA, McEntee MF, Reed WM, Kench PL
    J Appl Clin Med Phys, 2020 Sep;21(9):209-214.
    PMID: 32657493 DOI: 10.1002/acm2.12977
    PURPOSE: The purpose of this study was to investigate the effect of increasing iterative reconstruction (IR) algorithm strength at different tube voltages in coronary computed tomography angiography (CCTA) protocols using a three-dimensional (3D)-printed and Catphan® 500 phantoms.

    METHODS: A 3D-printed cardiac insert and Catphan 500 phantoms were scanned using CCTA protocols at 120 and 100 kVp tube voltages. All CT acquisitions were reconstructed using filtered back projection (FBP) and Adaptive Statistical Iterative Reconstruction (ASIR) algorithm at 40% and 60% strengths. Image quality characteristics such as image noise, signal-noise ratio (SNR), contrast-noise ratio (CNR), high spatial resolution, and low contrast resolution were analyzed.

    RESULTS: There was no significant difference (P > 0.05) between 120 and 100 kVp measures for image noise for FBP vs ASIR 60% (16.6 ± 3.8 vs 16.7 ± 4.8), SNR of ASIR 40% vs ASIR 60% (27.3 ± 5.4 vs 26.4 ± 4.8), and CNR of FBP vs ASIR 40% (31.3 ± 3.9 vs 30.1 ± 4.3), respectively. Based on the Modulation Transfer Function (MTF) analysis, there was a minimal change of image quality for each tube voltage but increases when higher strengths of ASIR were used. The best measure of low contrast detectability was observed at ASIR 60% at 120 kVp.

    CONCLUSIONS: Changing the IR strength has yielded different image quality noise characteristics. In this study, the use of 100 kVp and ASIR 60% yielded comparable image quality noise characteristics to the standard CCTA protocols using 120 kVp of ASIR 40%. A combination of 3D-printed and Catphan® 500 phantoms could be used to perform CT dose optimization protocols.

    Matched MeSH terms: Phantoms, Imaging
  6. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Radiat Sci, 2018 Sep;65(3):175-183.
    PMID: 29707915 DOI: 10.1002/jmrs.279
    INTRODUCTION: An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom.

    METHODS: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan® 500 phantom.

    RESULTS: The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan® 500 phantom.

    CONCLUSIONS: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies.

    Matched MeSH terms: Phantoms, Imaging*
  7. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Radiat Sci, 2020 Sep;67(3):170-176.
    PMID: 32219989 DOI: 10.1002/jmrs.387
    INTRODUCTION: 3D-printed imaging phantoms are now increasingly available and used for computed tomography (CT) dose optimisation study and image quality analysis. The aim of this study was to evaluate the integrated 3D-printed cardiac insert phantom when evaluating iterative reconstruction (IR) algorithm in coronary CT angiography (CCTA) protocols.

    METHODS: The 3D-printed cardiac insert phantom was positioned into a chest phantom and scanned with a 16-slice CT scanner. Acquisitions were performed with CCTA protocols using 120 kVp at four different tube currents, 300, 200, 100 and 50 mA (protocols A, B, C and D, respectively). The image data sets were reconstructed with a filtered back projection (FBP) and three different IR algorithm strengths. The image quality metrics of image noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were calculated for each protocol.

    RESULTS: Decrease in dose levels has significantly increased the image noise, compared to FBP of protocol A (P 

    Matched MeSH terms: Phantoms, Imaging*
  8. Adibah Yusof NA, Abdul Karim MK, Asikin NM, Paiman S, Awang Kechik MM, Abdul Rahman MA, et al.
    Curr Med Imaging, 2023;19(10):1105-1113.
    PMID: 35975862 DOI: 10.2174/1573405618666220816160544
    BACKGROUND: For almost three decades, computed tomography (CT) has been extensively used in medical diagnosis, which led researchers to conduct linking of CT dose exposure with image quality.

    METHODS: In this study, a systematic review and a meta-analysis study were conducted on CT phantom for resolution study especially based on the low contrast detectability (LCD). Furthermore, the association between the CT parameter such as tube voltage and the type of reconstruction algorithm, the amount of phantom scanning affecting the image quality and the exposure dose were also investigated in this study. We utilize PubMed, ScienceDirect, Google Scholar and Scopus databases to search related published articles from the year 2011 until 2020. The notable keywords comprise "computed tomography", "CT phantom", and "low contrast detectability". Of 52 articles, 20 articles are within the inclusion criteria in this systematic review.

    RESULTS: The dichotomous outcomes were chosen to represent the results in terms of risk ratio as per meta-analysis study. Notably, the noise in iterative reconstruction (IR) reduced by 24%, 33% and 36% with the use of smooth, medium and sharp filters, respectively. Furthermore, adaptive iterative dose reduction (AIDR 3D) improved image quality and the visibility of smaller less dense objects compared to filtered back-projection. Most of the researchers used 120 kVp tube voltage to scan phantom for quality assurance study.

    CONCLUSION: Hence, optimizing primary factors such as tube potential reduces the dose exposure significantly, and the optimized IR technique could substantially reduce the radiation dose while maintaining the image quality.

    Matched MeSH terms: Phantoms, Imaging
  9. Ahmad MS, Suardi N, Shukri A, Nik Ab Razak NNA, Oglat AA, Makhamrah O, et al.
    Eur J Radiol Open, 2020;7:100257.
    PMID: 32944594 DOI: 10.1016/j.ejro.2020.100257
    Introduction: Hepatocellular carcinoma (HCC) is one of the most common cancer in the world, and the effectiveness of its treatment lies in its detection in its early stages. The aim of this study is to mimic HCC dynamically through a liver phantom and apply it in multimodality medical imaging techniques including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound.

    Methods and materials: The phantom is fabricated with two main parts, liver parenchyma and HCC inserts. The liver parenchyma was fabricated by adding 2.5 wt% of agarose powder combined with 2.6 wt% of wax powder while the basic material for the HCC samples was made from polyurethane solution combined with 5 wt% glycerol. Three HCC samples were inserted into the parenchyma by using three cylinders implanted inside the liver parenchyma. An automatic injector is attached to the input side of the cylinders and a suction device connected to the output side of the cylinders. After the phantom was prepared, the contrast materials were injected into the phantom and imaged using MRI, CT, and ultrasound.

    Results: Both HCC samples and liver parenchyma were clearly distinguished using the three imaging modalities: MRI, CT, and ultrasound. Doppler ultrasound was also applied through the HCC samples and the flow pattern was observed through the samples.

    Conclusion: A multimodal dynamic liver phantom, with HCC tumor models have been fabricated. This phantom helps to improve and develop different methods for detecting HCC in its early stages.

    Matched MeSH terms: Phantoms, Imaging
  10. Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NN, Ababneh B, Tousi ET
    Phys Med, 2016 Jan;32(1):36-41.
    PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003
    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
    Matched MeSH terms: Phantoms, Imaging
  11. Alashrah S, Kandaiya S, Maalej N, El-Taher A
    Radiat Prot Dosimetry, 2014 Dec;162(3):338-44.
    PMID: 24300340 DOI: 10.1093/rpd/nct315
    Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (d(max)) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6% for RF. The TLD measurement of the PSD was 16.0±5.0%. The (0.6 cm(3)) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0%. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0% and 15.7±2.2%. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD. This is probably due to the ionisation chamber calibration factor that is only valid in charged particle equilibrium condition, which is not achieved at the surface in the build-up region.
    Matched MeSH terms: Phantoms, Imaging*
  12. Alsadig AA, Abbas S, Kandaiya S, Ashikin NARNN, Qaeed MA
    Appl Radiat Isot, 2017 Nov;129:130-134.
    PMID: 28843699 DOI: 10.1016/j.apradiso.2017.08.021
    Phantoms are devices that simulate human tissues including soft tissues, lungs, and bones in medical and health physics. The purpose of this work was to investigate the differential dose absorption in several commercially available low-cost materials as substitutes to human tissues using Gafchromic XR-QA2 film. The measurement of absorbed dose by different materials of various densities was made using the film to establish the relationship between the absorbed dose and the material density. Materials investigated included soft board materials, Perspex, chicken bone, Jeltrate, chalk, cow bone, marble, and aluminum, which have varying densities from 0.26 to 2.67gcm-3. The absorbed dose increased as the density and atomic number of the material increased. The absorbed dose to the density can be well represented by a polynomial function for the materials used.
    Matched MeSH terms: Phantoms, Imaging*
  13. Alzoubi AS, Kandaiya S, Shukri A, Elsherbieny E
    Australas Phys Eng Sci Med, 2010 Jun;33(2):137-44.
    PMID: 20309667 DOI: 10.1007/s13246-010-0011-y
    Second cancer induction in the contralateral breast (CB) is an issue of some concern in breast radiotherapy especially for women under the age of 45 years at the time of treatment. The CB dose from 2-field and 3-field techniques in post-mastectomy chest wall irradiations in an anthropomorphic phantom as well as in patients were measured using thermoluminescent dosimeters (TLDs) at the local radiotherapy center. Breast and chest wall radiotherapy treatments were planned conformally (3D-CRT) and delivered using 6-MV photons. The measured CB dose at the surface fell sharply with distance from the field edge. However, the average ratio of the measured to the calculated CB dose using the pencil beam algorithm at the surface was approximately 53%. The mean and median measured internal dose at the posterior border of CB in a phantom was 5.47+/-0.22 cGy and 5.44 cGy, respectively. The internal CB dose was relatively independent of depth. In the present study the internal CB dose is 2.1-4.1% of the prescribed dose which is comparable to the values reported by other authors.
    Matched MeSH terms: Phantoms, Imaging
  14. Aminah M, Ng KH, Abdullah BJ, Jamal N
    Australas Phys Eng Sci Med, 2010 Dec;33(4):329-34.
    PMID: 20938762 DOI: 10.1007/s13246-010-0035-3
    The performance of a digital mammography system (Siemens Mammomat Novation) using different target/filter combinations and tube voltage has been assessed. The objective of this study is to optimize beam quality selection based on contrast-to-noise ratio (CNR) and mean glandular dose (MGD). Three composition of breast were studied with composition of glandular/adipose of 30/70, 50/50, and 70/30. CNR was measured using 2, 4 and 6 cm-thick simulated breast phantoms with an aluminium sheet of 0.1 mm thickness placed on top of the phantom. Three target/filter combinations, namely molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh) and tungsten/rhodium (W/Rh) with various tube voltage and mAs were tested. MGD was measured for each exposure. For 50/50 breast composition, Mo/Rh combination with tube voltage 26 kVp is optimal for 2 cm-thick breast. W/Rh combination with tube voltage 27 and 28 kVp are optimal for 4 and 6 cm-thick breast, respectively. For both 30/70 and 70/30 breast composition, W/Rh combination is optimal with tube voltage 25, 26 and 27 kVp, respectively. From our study it was shown that there are potential of dose reduction up to 11% for a set CNR of 3.0 by using beam quality other than that are determined by AEC selection. Under the constraint of lowest MGD, for a particular breast composition, calcification detection is optimized by using a softer X-ray beam for thin breast and harder X-ray beam for thick breast. These experimental results also indicate that for breast with high fibroglandular tissues (70/30), the use of higher beam quality does not always increase calcification detection due to additional structured noise caused by the fibroglandular tissues itself.
    Matched MeSH terms: Phantoms, Imaging
  15. Anam C, Naufal A, Sutanto H, Arifin Z, Hidayanto E, Tan LK, et al.
    Biomed Phys Eng Express, 2023 May 30;9(4).
    PMID: 37216929 DOI: 10.1088/2057-1976/acd785
    Objective. To develop an algorithm to measure slice thickness running on three types of Catphan phantoms with the ability to adapt to any misalignment and rotation of the phantoms.Method. Images of Catphan 500, 504, and 604 phantoms were examined. In addition, images with various slice thicknesses ranging from 1.5 to 10.0 mm, distance to the iso-center and phantom rotations were also examined. The automatic slice thickness algorithm was carried out by processing only objects within a circle having a diameter of half the diameter of the phantom. A segmentation was performed within an inner circle with dynamic thresholds to produce binary images with wire and bead objects within it. Region properties were used to distinguish wire ramps and bead objects. At each identified wire ramp, the angle was detected using the Hough transform. Profile lines were then placed on each ramp based on the centroid coordinates and detected angles, and the full-width at half maximum (FWHM) was determined for the average profile. The slice thickness was obtained by multiplying the FWHM by the tangent of the ramp angle (23°).Results. Automatic measurements work well and have only a small difference (<0.5 mm) from manual measurements. For slice thickness variation, automatic measurement successfully performs segmentation and correctly locates the profile line on all wire ramps. The results show measured slice thicknesses that are close (<3 mm) to the nominal thickness at thin slices, but slightly deviated for thicker slices. There is a strong correlation (R2= 0.873) between automatic and manual measurements. Testing the algorithm at various distances from the iso-center and phantom rotation angle also produced accurate results.Conclusion. An automated algorithm for measuring slice thickness on three types of Catphan CT phantom images has been developed. The algorithm works well on various thicknesses, distances from the iso-center, and phantom rotations.
    Matched MeSH terms: Phantoms, Imaging
  16. Asan NB, Hassan E, Shah JVSRM, Noreland D, Blokhuis TJ, Wadbro E, et al.
    Sensors (Basel), 2018 Aug 21;18(9).
    PMID: 30134629 DOI: 10.3390/s18092752
    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7⁻2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.
    Matched MeSH terms: Phantoms, Imaging
  17. Azhar, N. A. A., Tee, H. S., Yee, Y. Y., Awang, M. N. A., Abdul Manan, H., Yusoff, A. N.
    MyJurnal
    Many studies have been carried out to produce magnetic resonance imaging (MRI) phantoms as alternative to water phantom. Among the important properties of a phantom are the T1 and T2 relaxation times. The objective of this study is to investigate the T1 and T2 characteristics of the agarose gel phantoms with different relaxation modifier (gadolinium (III) oxide, Gd2O3) concentrations or [Gd2O3]. Six agarose gel phantoms were prepared with different [Gd2O3]. The T1 (fixed echo time (TE) and different repetition time (TR)) and T2 (fixed TR and different TE) measurements on all phantoms were conducted using the 3-T MRI system via spin echo (SE) and turbo spin echo (TSE) sequences, respectively. The signal-to-noise ratio (SNR) of all phantoms was calculated using Image-J software by implementing the region of interest (ROI) analysis. The SNR against TR and SNR against TE curves were fitted to the exponential equations for saturation, T1 and T2 determination. For every phantom, T1 curve demonstrated that the SNR increased exponentially with increasing TR, while T2 curves showed that the SNR decreased exponentially with increasing TE. Gd2O3 was found to successfully act as the relaxation modifier for the T1 but not the T2 curves. The T1 curve started to show saturated SNR (SNRo) and increasing SNRo for TR > 1000 ms and [Gd2O3] = 0.005 g/ml or higher. These behaviours are explained based on the dipole-dipole interaction that increases in phantoms with higher [Gd2O3], thus shortening the T1 relaxation. However, a systematic change in the T2 parameters with increasing [Gd2O3] was not observed. While Gd2O3 has significant effects on T1 relaxation parameters, the T2 relaxation parameters were minimally affected. With a shorter T1, the Gd2O3 added agarose gel can potentially be used as test phantom in fast imaging sequence, e.g. gradient echo pulse sequences.
    Matched MeSH terms: Phantoms, Imaging
  18. Aziz MZ, Yusoff AL, Osman ND, Abdullah R, Rabaie NA, Salikin MS
    J Med Phys, 2015 Jul-Sep;40(3):150-5.
    PMID: 26500401 DOI: 10.4103/0971-6203.165080
    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation.
    Matched MeSH terms: Phantoms, Imaging
  19. Banjade DP, Ng BS, Zakir M, Tajuddin AA, Shukri A
    Br J Radiol, 2002 Oct;75(898):812-8.
    PMID: 12381690
    A study of dose mapping techniques to investigate the dose distribution throughout a planned target volume (PTV) in a humanoid breast phantom exposed to a 6 MV photon beam similar to that of treatment conditions is described. For tangential breast irradiation using a 6 MV accelerator beam, the dose is mapped at various locations within the PTV using thermoluminescent dosemeters (TLDs) and radiographic films. An average size perspex breast phantom with the ability to hold the dosemeters was made. TLDs were exposed after packing them in various locations in a particular slice, as planned by the treatment planning system (TPS). To map the dose relative to the isocenter, films were exposed after tightly packing them in between phantom slices, parallel to the central axis of the beam. The dose received at every location was compared with the given dose as generated by the TPS. The mapped dose in each location in the isocentric slice from superficial to deep region was found to be in close agreement with the TPS generated dose to within +/-2%. Doses at greater depths and distant medial and lateral ends, however, were found to be lower by as much as 9.4% at some points. The mapped dose towards the superior region and closest inferior region from the isocenter was found to agree with those for TPS. Conversely, results for the farthest inferior region were found to be significantly different with a variance as much as 17.4% at some points, which is believed to be owing to the variation in size and shape of the contour. Results obtained from films confirmed this, showing similar trends in dose mapping. Considering the importance of accurate doses in radiotherapy, evaluating dose distribution using this technique and tool was found to be useful. This provides the opportunity to choose a technique and plan to provide optimum dose delivery for radiotherapy to the breast.
    Matched MeSH terms: Phantoms, Imaging*
  20. Banjade DP, Shrestha SL, Shukri A, Tajuddin AA, Bhat M
    Australas Phys Eng Sci Med, 2002 Sep;25(3):110-8.
    PMID: 12416587
    This is a study using LiF:Mg;Ti thermoluminescent dosimeter (TLD) rods in phantoms to investigate the effect of lack of backscatter on exit dose. Comparing the measured dose with anticipated dose calculated using tissue maximum ratio (TMR) or percentage depth dose (PDD) gives rise to a correction factor. This correction factor may be applied to in-vivo dosimetry results to derive true dose to a point within the patient. Measurements in a specially designed humanoid breast phantom as well as patients undergoing radiotherapy treatment were also been done. TLDs with reproducibility of within +/- 3% (1 SD) are irradiated in a series of measurements for 6 and 10 MV photon beams from a medical linear accelerator. The measured exit doses for the different phantom thickness for 6 MV beams are found to be lowered by 10.9 to 14.0% compared to the dose derived from theoretical estimation (normalized dose at dmax). The same measurements for 10 MV beams are lowered by 9.0 to 13.5%. The variations of measured exit dose for different field sizes are found to be within 2.5%. The exit doses with added backscatter material from 2 mm up to 15 cm, shows gradual increase and the saturated values agreed within 1.5% with the expected results for both beams. The measured exit doses in humanoid breast phantom as well as in the clinical trial on patients undergoing radiotherapy also agreed with the predicted results based on phantom measurements. The authors' viewpoint is that this technique provides sufficient information to design exit surface bolus to restore build down effect in cases where part of the exit surface is being considered as a target volume. It indicates that the technique could be translated for in vivo dose measurements, which may be a conspicuous step of quality assurance in clinical practice.
    Matched MeSH terms: Phantoms, Imaging*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links