METHODS: This double-blind, multicenter, phase 3 study consisted of a 1-week observation period during which patients were treated with two patches of placebo, followed by a 6-week double-blind period where patients were randomized (1:1:1) to receive once-daily blonanserin 40 mg, blonanserin 80 mg, or placebo patches. The primary endpoint was the change from baseline in the total Positive and Negative Symptom Scale (PANSS) score. Safety assessments included treatment-emergent adverse events (TEAEs).
RESULTS: Between December 2014 and October 2018, patients were recruited and randomly assigned to blonanserin 40 mg (n = 196), blonanserin 80 mg (n = 194), or placebo (n = 190); of these, 77.2% completed the study. Compared with placebo, blonanserin significantly improved PANSS total scores at 6 weeks (least square mean [LSM] difference vs placebo: -5.6 with blonanserin 40 mg; 95% confidence interval [CI] -9.6, -1.6; adjusted p = 0.007, and - 10.4 with blonanserin 80 mg; 95% CI -14.4, -6.4; adjusted p
MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.
RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.
CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.