Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Robert SD, Ismail AA, Winn T, Wolever TM
    Asia Pac J Clin Nutr, 2008;17(1):35-9.
    PMID: 18364324
    The objective of the present study was to measure the glycemic index of durian, papaya, pineapple and water-melon grown in Malaysia. Ten (10) healthy volunteers (5 females, 5 males; body mass index 21.18+/-1.7 kg/m2) consumed 50 g of available carbohydrate portions of glucose (reference food) and four test foods (durian, papaya, pineapple and watermelon) in random order after an overnight fast. Glucose was tested on three separate occasions, and the test foods were each tested once. Postprandial plasma glucose was measured at intervals for two hours after intake of the test foods. Incremental areas under the curve were calculated, and the glycemic index was determined by expressing the area under the curve after the test foods as a percentage of the mean area under the curve after glucose. The results showed that the area under the curve after pineapple, 232+/-24 mmolxmin/L, was significantly greater than those after papaya, 147+/-14, watermelon, 139+/-8, and durian, 124+/-13 mmolxmin/L (p<0.05). Similarly, the glycemic index of pineapple, 82+/-4, was significantly greater than those of papaya, 58+/-6, watermelon, 55+/-3, and durian, 49+/-5 (p<0.05). The differences in area under the curve and glycemic index among papaya, watermelon and durian were not statistically significant. We conclude that pineapple has a high glycemic index, whereas papaya is intermediate and watermelon and durian are low glycemic index foods. The validity of these results depends on the accuracy of the data in the food tables upon which the portion sizes tested were based.
    Matched MeSH terms: Postprandial Period
  2. Moy FM, Ray A, Buckley BS, West HM
    Cochrane Database Syst Rev, 2017 Jun 11;6(6):CD009613.
    PMID: 28602020 DOI: 10.1002/14651858.CD009613.pub3
    BACKGROUND: Self-monitoring of blood glucose (SMBG) is recommended as a key component of the management plan for diabetes therapy during pregnancy. No existing systematic reviews consider the benefits/effectiveness of various techniques of blood glucose monitoring on maternal and infant outcomes among pregnant women with pre-existing diabetes. The effectiveness of the various monitoring techniques is unclear.

    OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.

    SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.

    MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.

    AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.

    Matched MeSH terms: Postprandial Period
  3. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Postprandial Period
  4. Ch'ng LZ, Barakatun-Nisak MY, Wan Zukiman WZH, Abas F, Wahab NA
    Diabetes Metab Syndr, 2019 05 29;13(4):2339-2345.
    PMID: 31405640 DOI: 10.1016/j.dsx.2019.05.026
    Medical Nutrition Therapy (MNT) plays an essential role in overall glycemic management. Less focus is given on managing postmeal hyperglycemia despite the facts that, it is a common feature of Type 2 Diabetes (T2D). The purpose of this narrative review is to provide a comprehensive understanding of the existing literature on the nutritional approaches to improve postmeal hyperglycemia in patients with T2D. We searched multiple databases for the studies examining the nutritional approaches to manage postmeal glucose in patients with T2D. We included studies that involve human trials that were published in English for the past 10 years. Our review of the current literature indicates that the postmeal hyperglycemia can be improved with four nutritional approaches. These approaches include (i) utilizing the appropriate amount and selecting the right type of carbohydrates, (ii) using specific types of dietary protein, (iii) manipulating the meal timing and orders and (iv) others (promoting postmeal physical activity, incorporating diabetes-specific formula and certain functional foods). The potential mechanisms underlying these approaches are discussed and the identified gaps warranted further research. This array of nutritional strategies provide a set of options for healthcare professionals to facilitate patients with T2D in achieving the optimal level of postmeal glucose.
    Matched MeSH terms: Postprandial Period
  5. Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K, Teng KT
    Eur J Nutr, 2018 Feb;57(1):179-190.
    PMID: 27632019 DOI: 10.1007/s00394-016-1307-9
    PURPOSE: Limited clinical evidence is available on the effects of amount and types of dietary fats on postprandial insulinemic and gastrointestinal peptide responses in metabolic syndrome subjects. We hypothesized that meals enriched with designated: (1) amount of fats (50 vs 20 g), (2) fats with differing fatty acid composition (saturated, SFA; monounsaturated, MUFA or n-6 polyunsaturated fatty acids, PUFA) would affect insulinemic and gastrointestinal peptide releases in metabolic syndrome subjects.

    METHODS: Using a randomized, crossover and double-blinded design, 15 men and 15 women with metabolic syndrome consumed high-fat meals enriched with SFA, MUFA or n-6 PUFA, or a low-fat/high-sucrose (SUCR) meal. C-peptide, insulin, glucose, gastrointestinal peptides and satiety were measured up to 6 h.

    RESULTS: As expected, SUCR meal induced higher C-peptide (45 %), insulin (45 %) and glucose (49 %) responses compared with high-fat meals regardless of types of fatty acids (P < 0.001). Interestingly, incremental area under the curve (AUC0-120min) for glucagon-like peptide-1 was higher after SUCR meal compared with MUFA (27 %) and n-6 PUFA meals (23 %) (P = 0.01). AUC0-120min for glucose-dependent insulinotropic polypeptide was higher after SFA meal compared with MUFA (23 %) and n-6 PUFA meals (20 %) (P = 0.004). Significant meal x time interaction (P = 0.007) was observed for ghrelin, but not cholecystokinin and satiety.

    CONCLUSIONS: The amount of fat regardless of the types of fatty acids affects insulin and glycemic responses. Both the amount and types of fatty acids acutely affect the gastrointestinal peptide release in metabolic syndrome subjects, but not satiety.

    Matched MeSH terms: Postprandial Period
  6. Che HL, Kanthimathi MS, Loganathan R, Yuen KH, Tan AT, Selvaduray KR, et al.
    Eur J Clin Nutr, 2017 01;71(1):107-114.
    PMID: 27759074 DOI: 10.1038/ejcn.2016.200
    BACKGROUND/OBJECTIVES: Evidence shows that tocotrienols potentially reverse various chronic disease progressions caused by the metabolic syndrome. We aimed to investigate the acute effects of a single-dose supplementation of gamma and delta tocotrienols (γδ-T3, 1:4 ratio) compared with those in placebo on the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    SUBJECTS/METHODS: Thirty metabolic syndrome subjects (15 men and 15 women) were recruited to a randomized, double-blinded and crossover study. The subjects were administered a single dose of 200 mg or 400 mg γδ-T3 emulsions or placebo incorporated into a glass of strawberry-flavored milkshake, consumed together with a high-fat muffin. Blood samples were collected at 0, 5, 15, 30, 60, 90, 120, 180, 240, 300 and 360 min after meal intake.

    RESULTS: Plasma vitamin E levels reflected the absorption of γδ-T3 after treatments. Postprandial changes in serum C-peptide, serum insulin, plasma glucose, triacylglycerol, non-esterified fatty acid and adiponectin did not differ between treatments, with women displaying delayed increase in the aforementioned markers. No significant difference between treatments was observed for plasma cytokines (interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha) and thrombogenic markers (plasminogen activator inhibitor type 1 and D-dimer).

    CONCLUSIONS: Supplementation of a single dose of γδ-T3 did not change the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    Matched MeSH terms: Postprandial Period/drug effects*
  7. Mo SY, Lai OM, Chew BH, Ismail R, Bakar SA, Jabbar NA, et al.
    Eur J Nutr, 2019 Aug;58(5):1873-1885.
    PMID: 29872922 DOI: 10.1007/s00394-018-1738-6
    PURPOSE: We aim to investigate the postprandial effects of palm olein (PO) and chemically interesterified palm olein (IPO) with different proportions of palmitic acid at the sn-2 position using high oleic sunflower oil (HOS) as control fat on concentrations of gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters in type 2 diabetic (T2D) subjects.

    METHODS: Using a randomised double-blind crossover design, 21 (men = 6, women = 15) T2D subjects consumed test meals (3.65 MJ) consisting of a high fat muffin (containing 50 g test fats provided as PO, IPO or HOS) and a milkshake. Postprandial changes in gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters after meals were analysed. Some of the solid fractions of the IPO were removed and thus the fatty acid composition of the PO and IPO was not entirely equal (PO vs IPO: palmitate 39.8 vs 38.7; oleate 43.6 vs 45.1). PO, IPO and HOS contained 9.7, 38.9 and 0.2 g/100 g total fatty acids of palmitic acid at the sn-2 position, respectively. At 37 °C, IPO contained 4.2% SFC whereas PO and HOS were completely melted.

    RESULTS: Our novel observation shows that the incremental area under curve (iAUC) 0-6 h of plasma GIP concentration was on average 16% lower following IPO meal compared with PO and HOS (P 

    Matched MeSH terms: Postprandial Period
  8. Chang LF, Vethakkan SR, Nesaretnam K, Sanders TA, Teng KT
    J Clin Lipidol, 2016 09 17;10(6):1431-1441.e1.
    PMID: 27919361 DOI: 10.1016/j.jacl.2016.09.006
    BACKGROUND: Current dietary guidelines recommend the replacement of saturated fatty acids (SAFAs) with carbohydrates or monounsaturated fatty acids (MUFAs) based on evidence on lipid profile alone, the chronic effects of the mentioned replacements on insulin secretion and insulin sensitivity are however unclear.

    OBJECTIVE: To assess the chronic effects of the substitution of refined carbohydrate or MUFA for SAFA on insulin secretion and insulin sensitivity in centrally obese subjects.

    METHODS: Using a crossover design, randomized controlled trial in abdominally overweight men and women, we compared the effects of substitution of 7% energy as carbohydrate or MUFA for SAFA for a period of 6 weeks each. Fasting and postprandial blood samples in response to corresponding SAFA, carbohydrate, or MUFA-enriched meal-challenges were collected after 6 weeks on each diet treatment for the assessment of outcomes.

    RESULTS: As expected, postprandial nonesterified fatty acid suppression and elevation of C-peptide, insulin and glucose secretion were the greatest with high-carbohydrate (CARB) meal. Interestingly, CARB meal attenuated postprandial insulin secretion corrected for glucose response; however, the insulin sensitivity and disposition index were not affected. SAFA and MUFA had similar effects on all markers except for fasting glucose-dependent insulinotropic peptide concentrations, which increased after MUFA but not SAFA when compared with CARB.

    CONCLUSION: In conclusion, a 6-week lower-fat/higher-carbohydrate (increased by 7% refined carbohydrate) diet may have greater adverse effect on insulin secretion corrected for glucose compared with isocaloric higher-fat diets. In contrast, exchanging MUFA for SAFA at 7% energy had no appreciable adverse impact on insulin secretion.

    Matched MeSH terms: Postprandial Period
  9. Lee CL, Shyam S, Lee ZY, Tan JL
    Nutr Health, 2021 Jun;27(2):161-169.
    PMID: 33349136 DOI: 10.1177/0260106020975573
    BACKGROUND: Postprandial glycaemia has an impact on health but there is limited data about the effect of food order on postprandial glycaemia by body weight status.

    AIM: To investigate the effects of food order on postprandial glucose (PPG) excursion, in Indian adults with normal (NL) and overweight/obese (OW) Body Mass Index.

    METHODS: This randomised crossover study was conducted at a Malaysian university among Indian adults without diabetes. The participants consumed isocaloric test meals at three study visits based on randomised food orders: carbohydrate first/protein last (CF); protein first/carbohydrate last (CL); and a composite meal containing carbohydrate and protein (CM). Capillary blood glucose was measured at baseline, 30, 60, 90 and 120 minutes after starting the meal.

    RESULTS: The CL food order had a blunting effect on PPG excursion at 30 and 60 minutes (p < 0.01). The CL food order resulted in lower glucose peak when compared with the CF and CM food order (p < 0.001). The CL food order resulted in lower incremental glucose peak (mmol/L) (NL: CF 3.9 ± 0.3, CM 3.0 ± 0.3, CL 2.0 ± 0.2; OW: CF 2.9 ± 0.3, CM 2.5 ± 0.3, CL 1.8 ± 0.2) and iAUC 0-120 min (mmol/Lxmin) (NL: CF 272.4 ± 26.7, CM 206.2 ± 30.3, CL 122.0 ± 14.8; OW: CF 193.2 ± 23.1, CM 160.1 ± 21.7, CL 113.6 ± 15.3) when compared with the CF food order (p < 0.001). The effect of food order on postprandial excursion did not differ between the NL (n = 14) and the OW (n = 17) groups.

    CONCLUSION: In participants with normal and overweight/obese BMI, consuming food in the protein first/carbohydrate last order had the biggest effect in reducing PPG excursion.

    Matched MeSH terms: Postprandial Period
  10. Karupaiah T, Tan CH, Chinna K, Sundram K
    J Am Coll Nutr, 2011 Dec;30(6):511-21.
    PMID: 22331686
    OBJECTIVE: Saturated fats increase total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) and are linked to coronary artery disease risk. The effect of variance in chain length of saturated fatty acids (SFA) on coronary artery disease in human postprandial lipemia is not well elucidated.

    METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.

    RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).

    CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.

    Matched MeSH terms: Postprandial Period*
  11. Fairus S, Nor RM, Cheng HM, Sundram K
    Nutr J, 2012;11:5.
    PMID: 22252050 DOI: 10.1186/1475-2891-11-5
    Tocotrienols (T3) and tocopherols (T), both members of the natural vitamin E family have unique biological functions in humans. T3 are detected in circulating human plasma and lipoproteins, although at concentrations significantly lower than α-tocopherol (α-T). T3, especially α-T3 is known to be neuropotective at nanomolar concentrations and this study evaluated the postprandial fate of T3 and α-T in plasma and lipoproteins.
    Matched MeSH terms: Postprandial Period*
  12. Fairus S, Cheng HM, Sundram K
    J Integr Med, 2020 Jan;18(1):68-79.
    PMID: 31812339 DOI: 10.1016/j.joim.2019.11.005
    OBJECTIVE: Tocotrienols (T3s) have been hypothesized to have greater antioxidant capacity than tocopherols (Ts) due to differences in biokinetics that affect their absorption and function. The present trial compares the antioxidant effectiveness following postprandial challenge of two different doses of α-T or palm T3-rich fraction (TRF) treatments and evaluates their dose-response effects on antioxidant status.

    METHODS: Ten healthy volunteers were given four different doses of vitamin E formulations (268 mg α-T, 537 mg α-T, 263 mg TRF or 526 mg TRF) in a cross-over postprandial trial. Blood was sampled at 0, 2, 4, 5, 6 and 8 hours after meal consumption and plasma antioxidant status including total glutathione, superoxide dismutase, malondialdehyde (MDA), ferric reducing antioxidant potential and trolox-equivalent antioxidant capacity, was analyzed.

    RESULTS: Supplementation with the different doses of either α-T or TRF did not significantly improve overall antioxidant status. There was no significant difference in overall antioxidant status among treatments at the different doses compared. However, a significant dose-response effect was observed for plasma MDA throughout the 8-hour postprandial period. MDA was significantly lower after the 537 mg α-T treatment, compared to the 268 mg α-T treatment; it was also lower after the 526 mg TRF treatment compared to the 263 mg TRF treatment (P 

    Matched MeSH terms: Postprandial Period
  13. Fairus S, Nor RM, Cheng HM, Sundram K
    Am J Clin Nutr, 2006 Oct;84(4):835-42.
    PMID: 17023711
    BACKGROUND: The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues.

    OBJECTIVE: The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins.

    DESIGN: Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval.

    RESULTS: After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments.

    CONCLUSIONS: Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.

    Matched MeSH terms: Postprandial Period*
  14. Karupaiah T, Sundram K
    Nutr J, 2013 Aug 16;12:122.
    PMID: 23953645 DOI: 10.1186/1475-2891-12-122
    BACKGROUND: Postprandial lipemia (PL) contributes to coronary artery disease. The fatty acid composition of dietary fats is potentially a modifiable factor in modulating PL response.

    METHODS: This human postprandial study evaluated 3 edible fat blends with differing polyunsaturated to saturated fatty acids (P/S) ratios (POL = 0.27, AHA = 1.00, PCAN = 1.32). A cross-over design included mildly hypercholestrolemic subjects (9 men and 6 women) preconditioned on test diets fats at 31% energy for 7 days prior to the postprandial challenge on the 8th day with 50 g test fat. Plasma lipids and lipoproteins were monitored at 0, 1.5, 3.5, 5.5 and 7 hr.

    RESULTS: Plasma triacylglycerol (TAG) concentrations in response to POL, AHA or PCAN meals were not significant for time x test meal interactions (P > 0.05) despite an observed trend (POL > AHA > PCAN). TAG area-under-the-curve (AUC) increased by 22.58% after POL and 7.63% after PCAN compared to AHA treatments (P > 0.05). Plasma total cholesterol (TC) response was not significant between meals (P > 0.05). Varying P/S ratios of test meals significantly altered prandial high density lipoprotein-cholesterol (HDL-C) concentrations (P  AHA > PCAN). Paired comparisons was significant between POL vs PCAN (P = 0.009) but not with AHA or between AHA vs PCAN (P > 0.05). A significantly higher HDL-C AUC for POL vs AHA (P = 0.015) and PCAN (P = 0.001) was observed. HDL-C AUC increased for POL by 25.38% and 16.0% compared to PCAN and AHA respectively. Plasma low density lipoprotein-cholesterol (LDL-C) concentrations was significant (P = 0.005) between meals and significantly lowest after POL meal compared to PCAN (P = 0.004) and AHA (P > 0.05) but not between AHA vs PCAN (P > 0.05). AUC for LDL-C was not significant between diets (P > 0.05). Palmitic (C16:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids in TAGs and cholesteryl esters were significantly modulated by meal source (P 

    Matched MeSH terms: Postprandial Period*
  15. Kavitha Nagandla, Sivalingam Nalliah
    MyJurnal
    Delay in childbearing, family history of type 2 diabetes mellitus and obesity in childbearing years increases a possibility of glucose intolerance or overt diabetes in pregnancy which may remain unrecognised unless an oral glucose tolerance test is done.The International Association of Diabetes and Pregnancy Study Group (IADPSG, 2010) recommended the detection and diagnosis of hyperglycaemic disorders in pregnancy at two stages of pregnancy, the first stage looking for ‘overt diabetes’ in early pregnancy based on risk factors like age, past history of gestational diabetes and obesity and the second stage where ‘gestational diabetes’ at 24-28 weeks with 75 g oral glucose tolerance test. Although the one step approach with 75 g of glucose offers operational convenience in diagnosing gestational diabetes, there are concerns raised by the National Institute of Health in the recent consensus statement, supporting the two step approach (50-g, 1-hour loading test screening 100-g, 3-hour oral glucose tolerance test) as the recommended approach for detecting gestational diabetes. Medical nutrition therapy (MNT) with well-designed meal plan and appropriate exercise achieves normoglycemia without inducing ketonemia and weight loss in most pregnant women with glucose intolerance. Rapidly acting insulin analogues, such as insulin lispro and aspart are safe in pregnancy and improve postprandial glycemic control in women with pre-gestational diabetes. The long acting analogues (Insulin detemir and glargine) though proven to be safe in pregnancy, do not confer added advantage if normoglycemia is achieved with intermediate insulin (NPH). Current evidence indicates the safe use of glyburide and metformin in the management of Type 2 diabetes and gestational diabetes as other options. However, it is prudent to communicate to the women that there is no data available on the long-term health of the offspring and the safety of these oral hypoglycemic drugs are limited to the prenatal period.
    Matched MeSH terms: Postprandial Period
  16. Teng KT, Chang LF, Vethakkan SR, Nesaretnam K, Sanders TAB
    Clin Nutr, 2017 10;36(5):1250-1258.
    PMID: 27642057 DOI: 10.1016/j.clnu.2016.08.026
    BACKGROUND & AIMS: Modification of the amount and type of dietary fat has diverse effects on cardiovascular risk.

    METHODS: We recruited 54 abdominally obese subjects to participate in a prospective cross-over design, single-blind trial comparing isocaloric 2000 kcal MUFA or carbohydrate-enriched diet with SFA-enriched diet (control). The control diet consisted of 15E% protein, 53E% carbohydrate and 32E% fat (12E% SFA, 13E% MUFA). A total of ∼7E% of MUFA or refined carbohydrate was exchanged with SFA in the MUFA-rich and carbohydrate-rich diets respectively for 6-weeks. Blood samples were collected at fasting upon trial commencement and at week-5 and 6 of each dietary-intervention phase to measure levels of cytokines (IL-6, IL-1β), C-reactive protein (CRP), thrombogenic markers (E-selectin, PAI-1, D-dimer) and lipid subfractions. Radial pulse wave analysis and a 6-h postprandial mixed meal challenge were carried out at week-6 of each dietary intervention. Blood samples were collected at fasting, 15 and 30 min and hourly intervals thereafter till 6 h after a mixed meal challenge (muffin and milkshake) with SFA or MUFA (872.5 kcal, 50 g fat, 88 g carbohydrates) or CARB (881.3 kcal, 20 g fat, 158 g carbohydrates)- enrichment corresponding to the background diets.

    RESULTS: No significant differences in fasting inflammatory and thrombogenic factors were noted between diets (P > 0.05). CARB meal was found to increase plasma IL-6 whereas MUFA meal elevated plasma D-dimer postprandially compared with SAFA meal (P 

    Matched MeSH terms: Postprandial Period
  17. Robert SD, Ismail AA, Rosli WI
    Eur J Nutr, 2016 Oct;55(7):2275-80.
    PMID: 26358163 DOI: 10.1007/s00394-015-1037-4
    PURPOSE: This study aimed to determine whether fenugreek seed powder could reduce the glycemic response and glycemic index (GI) when added to buns and flatbreads.

    METHODS: In a randomised, controlled crossover trial, ten healthy human subjects (five men, five women) were given 50 g glucose (reference food, twice); buns (0 and 10 % fenugreek seed powder); and flatbreads (0 and 10 % fenugreek seed powder) on six different occasions. Finger prick capillary blood samples were collected at 0, 15, 30, 45, 60, 90 and 120 min after the start of the meal. The palatability of the test meals was scored using Likert scales.

    RESULTS: The incremental areas under the glucose curve value of buns and flatbreads with 10 % fenugreek (138 ± 17 mmol × min/L; 121 ± 16 mmol × min/L) were significantly lower than those of 0 % fenugreek bun and flatbreads (227 ± 15 mmol × min/L; 174 ± 14 mmol × min/L, P = <0.01). Adding 10 % fenugreek seed powder reduced the GI of buns from 82 ± 5 to 51 ± 7 (P 

    Matched MeSH terms: Postprandial Period
  18. Karupaiah T, Aik CK, Heen TC, Subramaniam S, Bhuiyan AR, Fasahat P, et al.
    J Sci Food Agric, 2011 Aug 30;91(11):1951-6.
    PMID: 21480266 DOI: 10.1002/jsfa.4395
    BACKGROUND: We evaluated glycaemic response of a brown rice variant (BR) developed by cross-breeding. Subjects (n = 9) consumed 50 g carbohydrate equivalents of BR, white rice (WR) and the polished brown rice (PR) in comparison to 50 g glucose reference (GLU) in a cross-over design. Plasma glucose and insulin at 0, 15, 45, 60, 90, 120 and 180 min were measured and incremental area under the curve (IAUC) and indices for glucose (GI) and insulin (II) calculated.
    RESULTS: BR compared to PR or WR produced the lowest postprandial glycaemia (GI: 51 vs 79 vs 86) and insulinaemia (II: 39 vs 63 vs 68) irrespective of amylose content (19 vs 23 vs 26.5%). Only BR was significantly different from GLU for both plasma glucose (P = 0.012) and insulin (P = 0.013) as well as IAUC(glu) (P = 0.045) and IAUC(ins) (P = 0.031). Glycaemic and insulinaemic responses correlated positively (r = 0.550, P < 0.001). Linear trends for IAUC(glu) and IAUC(ins) indicated a greater secretion of insulin tied in with a greater glycaemic response for WR (r(2) = 0.848), moderate for PR (r(2) = 0.302) and weakest for BR (r(2) = 0.122).
    CONCLUSION: The brown rice variant had the lowest GI and II values but these advantages were lost with polishing.
    Matched MeSH terms: Postprandial Period
  19. Sukarna N, Tan PC, Hong JGS, Sulaiman S, Omar SZ
    Arch Gynecol Obstet, 2021 08;304(2):345-353.
    PMID: 33452923 DOI: 10.1007/s00404-020-05950-3
    PURPOSE: To compare 3 consecutive days of hyperglycemic response following antenatal dexamethasone regimens of 12-mg or 6-mg doses 12 hourly in diet-controlled gestational diabetes.

    METHODS: A randomized controlled trial was carried out in a university hospital in Malaysia. Women with lifestyle-controlled gestational diabetes scheduled to receive clinically indicated antenatal corticosteroids (dexamethasone) were randomized to 12-mg 12 hourly for one day (2 × 12-mg) or 6-mg 12-hourly for two days (4 × 6-mg). 6-point (pre and 2-h postprandial) daily self-monitoring of capillary blood sugar profile for up to 3 consecutive days was started after the first dexamethasone injection. Hyperglycemia is defined as blood glucose pre-meal ≥ 5.3 or 2 h postprandial ≥ 6.7 mmol/L. The primary outcome was a number of hyperglycemic episodes in Day-1 (first 6 BSP points). A sample size of 30 per group (N = 60) was planned.

    RESULTS: Median [interquartile range] hyperglycemic episodes 4 [2.5-5] vs. 4 [3-5] p = 0.3 in the first day, 3 [2-4] vs. 1 [0-3] p = 0.01 on the second day, 0 [0-1] vs. 0 [0-1] p = 0.6 on the third day and over the entire 3 trial days 7 [6-9] vs. 6 [4-8] p = 0.17 for 6-mg vs. 12-mg arms, respectively. 2/30 (7%) in each arm received an anti-glycemic agent during the 3-day trial period (capillary glucose exceeded 11 mmol/L). Mean birth weight (2.89 vs. 2.49 kg p 

    Matched MeSH terms: Postprandial Period
  20. Zainah Adam, Muhajir Hamid, Amin Ismail, Shafii Khamis, Norazizah Marsidi
    MyJurnal
    Ficus deltoidea or Mas cotek is one of the common medicinal plants used in Malaysia has been claimed to have antidiabetic activity. However, scientific evidence to confirm its efficacy is still lacking. Thus, the present study was undertaken to evaluate the potential of ethanolic extract of Ficus deltoidea to reduce hyperglycaemia in streptozotocininduced diabetic rats at different prandial state. The results showed that, ethanolic extract of Ficus deltoidea significantly reduced fasting and postprandial hyperglycemia particularly after 4 and 6 hours of extract administration. Likewise, glucose tolerance activity was significantly improved in the presence of Ficus deltoidea ethanolic extract at a low dose, 100 mg/kg. It is suggested that ethanolic extract of Ficus deltoidea at particular doses, possess fasting and postprandial antihyperglycemic activity as well as glucose tolerance activity in streptozotocin-induced diabetic rats.
    Matched MeSH terms: Postprandial Period
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links