Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Johnson D, Letchumanan V, Thurairajasingam S, Lee LH
    Nutrients, 2020 Jul 03;12(7).
    PMID: 32635373 DOI: 10.3390/nu12071983
    The study of human microbiota and health has emerged as one of the ubiquitous research pursuits in recent decades which certainly warrants the attention of both researchers and clinicians. Many health conditions have been linked to the gut microbiota which is the largest reservoir of microbes in the human body. Autism spectrum disorder (ASD) is one of the neurodevelopmental disorders which has been extensively explored in relation to gut microbiome. The utilization of microbial knowledge promises a more integrative perspective in understanding this disorder, albeit being an emerging field in research. More interestingly, oral and vaginal microbiomes, indicating possible maternal influence, have equally drawn the attention of researchers to study their potential roles in the etiopathology of ASD. Therefore, this review attempts to integrate the knowledge of microbiome and its significance in relation to ASD including the hypothetical aetiology of ASD and its commonly associated comorbidities. The microbiota-based interventions including diet, prebiotics, probiotics, antibiotics, and faecal microbial transplant (FMT) have also been explored in relation to ASD. Of these, diet and probiotics are seemingly promising breakthrough interventions in the context of ASD for lesser known side effects, feasibility and easier administration, although more studies are needed to ascertain the actual clinical efficacy of these interventions. The existing knowledge and research gaps call for a more expanded and resolute research efforts in establishing the relationship between autism and microbiomes.
    Matched MeSH terms: Prebiotics
  2. Farhangi MA, Javid AZ, Sarmadi B, Karimi P, Dehghan P
    Clin Nutr, 2018 08;37(4):1216-1223.
    PMID: 28669666 DOI: 10.1016/j.clnu.2017.06.005
    OBJECTIVE: The aim of this trial was to determine the efficacy of a resistant dextrin on immune-mediated inflammation and hypothalamic-pituitary-adrenal axis in women with type 2 diabetes mellitus (T2DM).

    METHODS: Females (n = 55) with T2DM were randomly allocated into intervention group (n = 30) and control group (n = 25), in which they received 10 g/d of Nutriose®06 (a resistant dextrin) or maltodextrin for 8 weeks, respectively. Fasting blood samples were taken to measure immune system related parameters like white blood cell count, CD4, CD8, interferon-γ (IFNγ), interleukins (IL12, IL4, IL10), cortisol, tryptophan (TRP), ACTH (Adrenocorticotropic hormone), Kynurenine (KYN) and plasma lipopolysaccharide (LPS) at the beginning and end of trial. Mental health was assessed using general health questionnaire (GHQ) and depression, anxiety and stress scale (DASS).

    RESULTS: Resistant dextrin caused a significant decrease in levels of cortisol, KYN, KYN/TRP ratio, IFNγ, IL12, IFNγ/IL10 ratio, LPS, and a significant increase in the monocyte, GHQ, DASS, CD8, IL10, IL4 in the intervention group as compared with baseline. A significant decrease in the level of LPS (-6.20 EU/mL, -17.8%), IFNγ (-0.6 pg/ml, -26.8%), cortisol (-2.6 μg/dl, -20.9%), IFNγ/IL10 ratio (0.01, 10%), GHQ (-5.1, -12.5%), DASS (-10.4, -38.4%), KYN/TRP ratio (6.8, 29.1%), and a significant increase in levels of CD8 (6.4%, 6.1%) and IL10 (2.6 pg/ml, 21.6%) in the intervention group as compared with the control group (P  0.05).

    CONCLUSION: Supplementation of Nutriose®06 may have beneficial effects on mental health and the immune system response in women with T2DM.

    Matched MeSH terms: Prebiotics*
  3. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2010 Mar;61(2):161-81.
    PMID: 20085504 DOI: 10.3109/09637480903348122
    Lactobacillus sp. FTDC 2113, L. acidophilus FTDC 8033, L. acidophilus ATCC 4356, L. casei ATCC 393, Bifidobacterium FTDC 8943 and B. longum FTDC 8643 were incorporated into soymilk supplemented with fructooligosaccharides (FOS), inulin, mannitol, maltodextrin and pectin. The objective of the present study was to evaluate the effects of prebiotics on the bioactivity of probiotic-fermented soymilk. Proteolytic activity was increased in the presence of FOS, while the supplementation of inulin and pectin increased the angiotensin I-converting enzyme inhibitory activity accompanied by lower IC(50) values. The beta-glucosidase activity was also enhanced in the presence of pectin. This led to higher bioconversion of glucosides to aglycones by probiotics, especially genistin and malonyl genistin to genistein. Results from this study indicated that the supplementation of prebiotics enhanced the in-vitro antihypertensive effect and production of bioactive aglycones in probiotic-fermented soymilk. Therefore, this soymilk could potentially be used as a dietary therapy to reduce the risks of hypertension and hormone-dependent diseases such as breast cancer, prostate cancer and osteoporosis.
    Matched MeSH terms: Prebiotics*
  4. Yeo SK, Ooi LG, Lim TJ, Liong MT
    Int J Mol Sci, 2009 Oct;10(8):3517-30.
    PMID: 20111692 DOI: 10.3390/ijms10083517
    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.
    Matched MeSH terms: Prebiotics*
  5. Zi-Ni T, Rosma A, Napisah H, Karim AA, Liong MT
    J Food Sci, 2015 Apr;80(4):H875-82.
    PMID: 25739421 DOI: 10.1111/1750-3841.12817
    Resistant starch type III (RS3 ) was produced from sago (Metroxylon sagu) and evaluated for its characteristics as a prebiotic. Two RS3 samples designated sago RS and HCl-sago RS contained 35.71% and 68.30% RS, respectively, were subjected to hydrolyses by gastric juice and digestive enzymes and to absorption. Both sago RS and HCl-sago RS were resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal tract enzymes and intestinal absorption with 96.75% and 98.69% of RS3 were recovered respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS3 supported the growth of both beneficial (lactobacilli and Bifidobacteria) and pathogenic microbes (Escherichia coli, Campylobacter coli, and Clostridium perfringens) in the range of 2.60 to 3.91 log10 CFU/mL. Hence, prebiotic activity score was applied to describe the extent to which sago RS3 supports selective growth of the lactobacilli and bifidobacteria strains over pathogenic bacteria. The highest scores were obtained from Bifidobacterium sp. FTDC8943 grown on sago RS (+0.26) and HCl-sago RS (+0.24) followed by L. bulgaricus FTDC1511 grown on sago RS (+0.21). The findings had suggested that sago RS3 has the prebiotic partial characteristics and it is suggested to further assess the suitability of sago RS3 as a prebiotic material.
    Matched MeSH terms: Prebiotics*
  6. Tang SG, Sieo CC, Kalavathy R, Saad WZ, Yong ST, Wong HK, et al.
    J Food Sci, 2015 Aug;80(8):C1686-95.
    PMID: 26174350 DOI: 10.1111/1750-3841.12947
    A 16-wk feeding experiment was conducted to investigate the effects of a prebiotic, isomaltooligosaccharide (IMO), a probiotic, PrimaLac®, and their combination as a synbiotic on the chemical compositions of egg yolks and the egg quality of laying hens. One hundred and sixty 16-wk-old Hisex Brown pullets were randomly assigned to 4 dietary treatments: (i) basal diet (control), (ii) basal diet + 1% IMO (PRE), (iii) basal diet + 0.1% PrimaLac® (PRO), and (iv) basal diet + 1% IMO + 0.1% PrimaLac® (SYN). PRE, PRO, or SYN supplementation not only significantly (P < 0.05) decreased the egg yolk cholesterol (24- and 28-wk-old) and total saturated fatty acids (SFA; 28-, 32-, and 36-wk-old), but also significantly (P < 0.05) increased total unsaturated fatty acids (UFA; 28-, 32-, and 36-wk-old), total omega 6 and polyunsaturated fatty acids (PUFA), including linoleic and alpha-linolenic acid levels in the eggs (28-wk-old). However, the total lipids, carotenoids, and tocopherols in the egg yolks were similar among all dietary treatments in the 24-, 28-, 32-, and 36-wk-old hens. Egg quality (Haugh unit, relative weights of the albumen and yolk, specific gravity, shell thickness, and yolk color) was not affected by PRE, PRO, or SYN supplementation. The results indicate that supplementations with IMO and PrimaLac® alone or in combination as a synbiotic might be useful for improving the cholesterol content and modifying the fatty acid compositions of egg yolk without affecting the quality of eggs from laying hens between 24 and 36 wk of age.
    Matched MeSH terms: Prebiotics*
  7. Ooi LG, Liong MT
    Int J Mol Sci, 2010 Jun 17;11(6):2499-522.
    PMID: 20640165 DOI: 10.3390/ijms11062499
    Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised.
    Matched MeSH terms: Prebiotics*
  8. Mohd Nor N'N, Abbasiliasi S, Marikkar MN, Ariff A, Amid M, Lamasudin DU, et al.
    J Food Sci Technol, 2017 Jan;54(1):164-173.
    PMID: 28242914 DOI: 10.1007/s13197-016-2448-9
    This paper reports on the extraction, partial characterization and the potential application of crude polysaccharides from defatted coconut residue as a prebiotic. The coconut residue was defatted and extracted to obtain the crude polysaccharides and its physicochemical properties were determined. The crude polysaccharides were assessed for monosaccharide composition, total carbohydrate content, reducing sugar concentration and protein content determination. The functional group and structural elucidation of crude polysaccharides was also done using Fourier transform infrared spectra analysis. The product was then subjected to artificial human gastric juice treatment to determine digestibility. Finally, an in vitro proliferation and acid production by two probiotic bacteria namely Lactobacillus casei Shirota and Lactobacillus bulgaricus were included in this study. It was found that the defatted coconut residue contained ash (0.54%), moisture (55.42%), protein (1.69%), crude fat (17.26%) and carbohydrate (25.73%). The percentage of crude polysaccharides extracted was 0.73 ± 0.04. The two fractions of monosaccharides obtained were glucose and fructose. Total carbohydrate content of DCR was 13.35% (w/v). The quantitative value of the reducing sugars obtained was 20.71%. Protein content in the crude polysaccharides was 0.009% and the peaks which indicated the presence of protein were observed at around 1640 cm(-1) (amide I) and 1530 cm(-1) (amide II). DCR crude polysaccharides were highly resistant (88%) to hydrolysis when subjected to artificial human gastric juice. The product was found to markedly stimulate two tested probiotics to proliferate and produce organic acids. All the above findings are supportive of the fact that polysaccharides extracted from DCR, an industrial waste, have a vast potential to be exploited as novel prebiotics.
    Matched MeSH terms: Prebiotics
  9. Scott KP, Grimaldi R, Cunningham M, Sarbini SR, Wijeyesekera A, Tang MLK, et al.
    J Appl Microbiol, 2020 Apr;128(4):934-949.
    PMID: 31446668 DOI: 10.1111/jam.14424
    AIMS: The concept of using specific dietary components to selectively modulate the gut microbiota to confer a health benefit, defined as prebiotics, originated in 1995. In 2018, a group of scientists met at the International Scientific Association for Probiotics and Prebiotics annual meeting in Singapore to discuss advances in the prebiotic field, focussing on issues affecting functionality, research methodology and geographical differences.

    METHODS AND RESULTS: The discussion ranged from examining scientific literature supporting the efficacy of established prebiotics, to the prospects for establishing health benefits associated with novel compounds, isolated from different sources.

    CONCLUSIONS: While many promising candidate prebiotics from across the globe have been highlighted in preliminary research, there are a limited number with both demonstrated mechanism of action and defined health benefits as required to meet the prebiotic definition. Prebiotics are part of a food industry with increasing market sales, yet there are great disparities in regulations in different countries. Identification and commercialization of new prebiotics with unique health benefits means that regulation must improve and remain up-to-date so as not to risk stifling research with potential health benefits for humans and other animals.

    SIGNIFICANCE AND IMPACT OF STUDY: This summary of the workshop discussions indicates potential avenues for expanding the range of prebiotic substrates, delivery methods to enhance health benefits for the end consumer and guidance to better elucidate their activities in human studies.

    Matched MeSH terms: Prebiotics/administration & dosage; Prebiotics/analysis; Prebiotics/standards*
  10. Munir MB, Hashim R, Abdul Manaf MS, Nor SA
    Trop Life Sci Res, 2016 Aug;27(2):111-25.
    PMID: 27688855 MyJurnal DOI: 10.21315/tlsr2016.27.2.9
    This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics.
    Matched MeSH terms: Prebiotics
  11. Yamin, S., Shuhaimi, M., Arbakariya, A., Khalilah, A. K., Anas, O., Yazid, A. M., et al.
    MyJurnal
    The use of component from Ganoderma lucidum as prebiotic source is interesting as the G. lucidum itself was known for more than a decade in the traditional Chinese medicine. In this work, Ganoderma lucidum crude polysaccharides (GLCP) and Polysaccharide-fraction number 2 (PF-2) were used as carbon sources in the fermentation with Bifidobacterium sp. The results showed the potential of prebiotic effect of the G. lucidum extract in batch-culture fermentation based on increment in the growth of bacteria used (0.4 – 1.5 log10 CFU/mL) after 18h fermentation. Fermentation was further done using faecal materials as bacterial inocula and bacterial growth changes were examined using real-time PCR. The results showed the ability of GLCP and PF-2 to support the growth of Bifidobacterium genus with 0.3 and 0.7 log10 cells/ml increased, respectively. Interestingly, Lactobacillus which is known as beneficial bacterial genus also showed growth increment with 0.7 and 1 log10 cells/ml increased. The competition for carbon sources thus inhibits the growth of potentially harmful genus, Salmonella (0.3 and 0.5 log10 cells/ml) in comparison to the control.
    Matched MeSH terms: Prebiotics
  12. Yeo SK, Liong MT
    J Sci Food Agric, 2013 Jan;93(2):396-409.
    PMID: 22806322 DOI: 10.1002/jsfa.5775
    The aim of this study was to evaluate the effect of electroporation (2.5-7.5 kV cm⁻¹ for 3.0-4.0 ms) on the growth of lactobacilli and bifidobacteria, membrane properties and bioconversion of isoflavones in mannitol-soymilk.
    Matched MeSH terms: Prebiotics/analysis
  13. Abd Rahman Jabir Mohd Din, Shaharudin Abdul Razak, Sabaratnam V
    Sains Malaysiana, 2012;41:1197-1203.
    A feeding trial was conducted to investigate the effect of mushroom supplementation as a prebiotic compound in an insect-based diet on the growth performance and feed utilization of red Tilapia (Oreochromis sp.). A total of 120 fingerlings were divided in triplicates for each treatment. Four experimental diets were offered to the fishes within a 56 days treatment period. Out of the four diets, three contained mushroom stalk meal (MSM) supplementation at various levels of inclusion of prebiotic compound (0.5% MSM; 1.0% MSM; 1.5% MSM) and the fourth a control diet without MSM inclusion. During the growth test, fish receiving diet containing prebiotic showed significantly higher (p<0.05) mean individual body weight in comparison with the control diet. The best effect was obtained in fish fed with Diet 2, where the specific growth rate (SGR) was 1.74%, feed conversion ratio (FCR) was 0.58, protein efficiency ratio (PER) was 5.17 and survival was 93.33%. No significant differences (p>0.05) were observed in whole body protein and ash contents among the fish feeding on these diets. All water quality parameters showed no significant difference (p>0.05) in all treatments. The result of this feeding trial indicated that the 10% supplementation level of MSM as a prebiotic for tilapia could be used in the insect-based diet, Zophobas morio.
    Matched MeSH terms: Prebiotics
  14. Rezaei S, Faseleh Jahromi M, Liang JB, Zulkifli I, Farjam AS, Laudadio V, et al.
    Poult Sci, 2015 Oct;94(10):2414-20.
    PMID: 26240398 DOI: 10.3382/ps/pev216
    This study examined the prebiotic effects of oligosaccharides extract from palm kernel expeller (OligoPKE) on growth performance, cecal microbiota and immune response of broiler chickens. A total of ninety 1-day-old broiler chicks (Cobb-500) were randomly allocated to three treatment groups of six pens (replicates) with five birds per pen. Dietary treatments were: (i) basal diet as control, (ii) basal diet plus 0.5% OligoPKE, and (iii) basal diet plus 1% OligoPKE. Birds growth traits (ADG, ADFI and G:F) were measured during the starter (1-21 day), finisher (22-35 day) and the entire experimental periods. Blood and cecal digesta samples were collected from chickens at 21 and 35 days of age (DOA). Microbial quantification of the digesta samples, white blood cells including heterophil, lymphocyte, monocyte, eosinophil, basophil counts and immunoglobulin (IgA and IgM) were also determined. OligoPKE had no effect on ADG and ADFI throughout the study period, but chickens fed OligoPKE supplemented diet had better (P < 0.05) G:F during finisher and overall rearing periods. Supplementing OligoPKE did not significantly alter the birds' microbiota of the cecal digesta. At 21 DOA, blood IgA concentration increased significantly when birds fed 1% OligoPKE in diet recorded compared to the control treatment. Similar observations were also recorded in birds at 35 DOA. Hematological data showed that heterophil and basophil counts of chickens fed OligoPKE supplement were lower than those in control group at 21 DOA. Our findings suggested that OligoPKE improved immune responses in broiler chickens, especially at younger age when the immune system is not still fully developed.
    Matched MeSH terms: Prebiotics/analysis
  15. Yeo SK, Liong MT
    J Sci Food Agric, 2010 Jan 30;90(2):267-75.
    PMID: 20355041 DOI: 10.1002/jsfa.3808
    Soy products have attracted much attention lately as carriers for probiotics. This study was aimed at enhancing the growth of probiotics in soymilk via supplementation with prebiotics.
    Matched MeSH terms: Prebiotics*
  16. Nami Y, Haghshenas B, Yari Khosroushahi A
    Food Sci Nutr, 2017 05;5(3):554-563.
    PMID: 28572941 DOI: 10.1002/fsn3.430
    Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
    Matched MeSH terms: Prebiotics
  17. Norhayati, H., Rasma Suzielawanis, Mohd Khan AMohd Khan, A.
    Malays J Nutr, 2013;19(1):111-119.
    MyJurnal
    Introduction: A prebiotic such as inulin is a well-known functional plant food ingredient. It is capable of stimulating growth of beneficial bifidobacteria in the intestine thus protecting against intestinal infections, preventing constipation, increasing mineral absorption, reducing the incidence of colon cancer, and producing B vitamins. Inulin added to food therefore has to be stable during food processing especially against heat treatment, low pH and Maillard reaction. Methods: Newly developed dark chocolate, DC-1, containing inulin (replacing sugar component) as an added value, was stored at 18oC, 60% relative humidity and 25oC, 80% relative humidity (RH) to determine shelf life stability compared to control dark chocolate, DC-0 (with high content of sugar). Sensory evaluation (quantitative descriptive analysis), water activity (aw), microbiological content and presence of inulin after storage of the prebiotic chocolate under both conditions were evaluated to determine shelf life. Results: The DC-1 chocolate had at least 12 months of shelf life at 18oC, 60% RH with better acceptance than DC-0; moreover, it did not experience microbiological and inulin content changes. At 25oC, 80% RH, the growth of Aspergillus sp. was observed on the surface of both DC-0 and DC-1 with aw >0.50 after a 2-month storage. Conclusion: Shelf life stability of DC-1 is almost similar to DC-0.
    Matched MeSH terms: Prebiotics
  18. Yeo SK, Liong MT
    J Agric Food Chem, 2011 Feb 9;59(3):885-97.
    PMID: 21235273 DOI: 10.1021/jf103974d
    The objective of the present study was to evaluate the effects of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-soymilk. Previous studies have shown that ultrasound elevated microbial enzymatic activity and growth by altering cellular membranes. The growth of probiotics was significantly decreased (P < 0.05) immediately after ultrasound treatment, attributed to membrane permeabilization, cell lysis, and membrane lipid peroxidation upon ultrasound treatment. The ultrasound treatment also caused alteration at the acyl chain, polar head, and interface region of the probiotic membrane phospholipid bilayers. The cells treated with ultrasound showed recovery from injury with subsequent increase in growth upon fermentation in soymilk (P < 0.05). Ultrasound treatment at 100 W for 2 and 3 min also enhanced (P < 0.05) the intracellular and extracellular β-glucosidase activity of probiotics, leading to increased (P < 0.05) bioconversion of glucosides to aglycones in the prebiotic-soymilk. Our present study illustrated that ultrasound treatment could produce bioactive synbiotic-soymilk with increased concentrations of bioactive aglycones.
    Matched MeSH terms: Prebiotics*
  19. Kasatpibal N, Whitney JD, Saokaew S, Kengkla K, Heitkemper MM, Apisarnthanarak A
    Clin Infect Dis, 2017 May 15;64(suppl_2):S153-S160.
    PMID: 28475793 DOI: 10.1093/cid/cix114
    Background: Microbiome-directed therapies are increasingly used preoperatively and postoperatively to improve postoperative outcomes. Recently, the effectiveness of probiotics, prebiotics, and synbiotics in reducing postoperative complications (POCs) has been questioned. This systematic review aimed to examine and rank the effectiveness of these therapies on POCs in adult surgical patients.

    Methods: We searched for articles from PubMed, Embase, Cochrane, Web of Science, Scopus, and CINAHL plus. From 2002 to 2015, 31 articles meeting the inclusion criteria were identified in the literature. Risk of bias and heterogeneity were assessed. Network meta-analyses (NMA) were performed using random-effects modeling to obtain estimates for study outcomes. Risk ratios (RRs) and 95% confidence intervals (CIs) were estimated. We then ranked the comparative effects of all regimens with the surface under the cumulative ranking (SUCRA) probabilities.

    Results: A total of 2,952 patients were included. We found that synbiotic therapy was the best regimen in reducing surgical site infection (SSI) (RR = 0.28; 95% CI, 0.12-0.64) in adult surgical patients. Synbiotic therapy was also the best intervention to reduce pneumonia (RR = 0.28; 95% CI, 0.09-0.90), sepsis (RR = 0.09; 95% CI, 0.01-0.94), hospital stay (mean = 9.66 days, 95% CI, 7.60-11.72), and duration of antibiotic administration (mean = 5.61 days, 95% CI, 3.19-8.02). No regimen significantly reduced mortality.

    Conclusions: This network meta-analysis suggests that synbiotic therapy is the first rank to reduce SSI, pneumonia, sepsis, hospital stay, and antibiotic use. Surgeons should consider the use of synbiotics as an adjunctive therapy to prevent POCs among adult surgical patients. Increasing use of synbiotics may help to reduce the use of antibiotics and multidrug resistance.

    Matched MeSH terms: Prebiotics/administration & dosage*
  20. Bahrudin MF, Abdul Rani R, Tamil AM, Mokhtar NM, Raja Ali RA
    Dig Dis Sci, 2020 Feb;65(2):541-549.
    PMID: 31209720 DOI: 10.1007/s10620-019-05695-3
    BACKGROUND: This study aimed to objectively investigate whether the addition of polydextrose to sterilized probiotic containing Lactobacillus helveticus will confer benefits to constipation-predominant irritable bowel syndrome patients.

    METHODS: A total of 163 patients were randomized into two groups: Group A to consume 350 mL of sterilized probiotic with 5.85 g polydextrose daily for 1 week and Group B without polydextrose. Intestinal transit time, fecal pH, fecal weight, and modified Garrigues questionnaires for pre- and post-consumption were assessed.

    RESULTS: Median intestinal transit time was significantly reduced from 58 (IQR 43-72) to 45 (IQR 24-59) hours and 48 (IQR 31-72) to 30 (IQR 24-49) hours for Groups A and B, respectively (p 

    Matched MeSH terms: Prebiotics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links