Displaying publications 1 - 20 of 105 in total

Abstract:
Sort:
  1. Abdullah H, Ismail I, Suppian R, Zakaria NM
    Int J Mol Sci, 2023 May 09;24(10).
    PMID: 37239840 DOI: 10.3390/ijms24108495
    Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  2. Wong SHM, Fang CM, Loh HS, Ngai SC
    Anticancer Agents Med Chem, 2023;23(7):817-831.
    PMID: 36380402 DOI: 10.2174/1871520623666221114095733
    AIMS: The aim of this study was to sensitize the resistant breast adenocarcinoma cells towards Tumour Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced apoptosis.

    BACKGROUND: Breast cancer is a heterogeneous disease involving complex mechanisms. TRAIL is a potential anticancer candidate for targeted treatment due to its selective killing effects on neoplastic cells. Nonetheless, resistance occurs in many cancers either intrinsically or after multiple treatments.

    OBJECTIVE: Therefore, this research investigated whether the combination of Trichostatin A (TSA) and Zebularine (Zeb) (TZ) followed by TRAIL (TZT) could sensitize the human breast adenocarcinoma cells towards apoptosis.

    METHODS: The breast adenocarcinoma cells, MDA-MB-231, MCF-7 and E-MDA-MB-231 (E-cadherin re-expressed MDA-MB-231) were treated with TSA, Zeb, TZ, TRAIL and TZT. The cells were subjected to hematoxylin and eosin (H & E) staining and FITC-Annexin V/Propidium Iodide apoptosis detection prior to proteome profiling.

    RESULTS: Based on morphological observation, apoptosis was induced in all cells treated with all treatment regimens though it was more evident for the TZT-treated cells. In the apoptosis detection analysis, TZ increased early apoptosis significantly in MDA-MB-231 and MCF-7 while TRAIL induced late apoptosis significantly in E-MDA-MB-231. Based on the proteome profiling on MDA-MB-231, TRAIL R2 and Fas expression was increased. For E-MDA-MB- 231, down-regulation of catalase, paraoxonase-2 (PON2), clusterin, an inhibitor of apoptosis proteins (IAPs) and cell stress proteins validated the notion that E-cadherin re-expression enhances TZT anti-cancer efficacy. Similar trend was observed in MCF-7 whereby TZT treatment down-regulated the anti-apoptotic catalase and PON2, increased the proapoptotic, B cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad) and Bcl-2-associated X (Bax), second mitochondria-derived activator of caspase (SMAC) and HtrA serine peptidase 2 (HTRA2) as well as TRAIL receptors (TRAIL R1 and TRAIL R2).

    CONCLUSION: TZ treatment serves as an efficient treatment regimen for MDA-MB-231 and MCF-7, while TRAIL serves as a better treatment option for E-MDA-MB-231. Therefore, future studies on E-cadherin's positive regulatory role in TRAIL-induced apoptosis are warranted.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  3. Rami M, Rahdar S, Ahmadi Hekmatikar A, Awang Daud DM
    Front Endocrinol (Lausanne), 2023;14:1175585.
    PMID: 37274326 DOI: 10.3389/fendo.2023.1175585
    BACKGROUND: Type 2 diabetes is one of the most common metabolic diseases in recent years and has become an important risk factor for cardiovascular disorders. The first goal is to reduce type 2 diabetes, and in the case of cardiovascular disease, the second goal is to reduce and manage that disorder.

    MATERIALS AND METHODS: The rats were divided into 4 groups: Healthy Control (n=8), Diabetes Control (n=8), Diabetes Training (n=8), and Healthy Training (n=8). The protocol consisted of 8 weeks of High-intensity interval (5 sessions per week), where the training started with 80% of the peak speed in the first week, and 10% was added to this speed every week. To measure the level of B-catenin, c-MYC, GSK3B, and Bcl-2 proteins using the western blot method, cardiac pathological changes were measured using hematoxylin and eosin staining, Masson's trichrome and PAS staining and apoptosis using the TUNEL method.

    FINDINGS: Histological results showed that diabetes causes significant pathological hypertrophy, fibrosis, and severe apoptosis in heart tissue. HIIT training significantly reduced pathological hypertrophy and fibrosis in heart tissue, and the rate of cardiomyocyte apoptosis was greatly reduced. This research showed that diabetes disorder increases the levels of B-catenin and c-Myc proteins and causes a decrease in the expression of GSK3B and Bcl-2 proteins. After eight weeks of HIIT training, the levels of B-catenin and c-Myc proteins decreased significantly, and the levels of GSK3B and Bcl-2 proteins increased.

    CONCLUSION: This study showed that HIIT could be a suitable strategy to reduce cardiomyopathy in type 2 diabetic rats. However, it is suggested that in future studies, researchers should perform different intensities and exercises to promote exercise goals in type 2 diabetic cardiomyopathy.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  4. Hasan M, Kumolosasi E, Jantan I, Jasamai M, Nazarudin N
    Acta Pharm, 2022 Mar 01;72(1):109-122.
    PMID: 36651527 DOI: 10.2478/acph-2022-0005
    Annexin A1 (ANXA1) is an endogenous protein involved in the control of proliferation, cell cycle, phagocytosis, and apoptosis in several types of cancer. To investigate the effects of ANXA1 knockdown in leukemia cells, transfection with specific ANXA1 siRNA was performed. Cell cycle and apoptosis were analyzed using flow cytometry and a mechanism involving caspases and Bcl-2 was quantified using Western blotting. Phagocytosis activity was evaluated using hematoxylin & eosin staining. The ANXA1 expression was significantly downregulated after the knockdown and apoptosis was induced in tested cells. The expression of caspase-9 and -3 increased in U937 and Jurkat cells respectively. Bcl-2 expression was downregulated in K562 and Jurkat cells while upregulated in U937. The number of leukemic cells arrested at the G2/M phase and the phagocytosis index were significantly increased in transfected cells. This suggests that ANXA1 knockdown might be a potential approach in the therapeutic strategy for leukemia.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism; Proto-Oncogene Proteins c-bcl-2/pharmacology
  5. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics; Proto-Oncogene Proteins c-bcl-2/metabolism
  6. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  7. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  8. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics; Proto-Oncogene Proteins c-bcl-2/metabolism*
  9. Abdul Rahman SF, Xiang Lian BS, Mohana-Kumaran N
    Future Oncol, 2020 Oct;16(28):2235-2249.
    PMID: 32715755 DOI: 10.2217/fon-2020-0389
    The B-cell lymphoma 2 (BCL-2) anti-apoptotic proteins have become attractive therapeutic targets especially with the development of BH3-mimetics which selectively target these proteins. However, it is important to note that expression levels of the anti-apoptotic proteins and their relevance in inhibiting apoptosis varies between different cell lineages. This addiction to certain anti-apoptotic proteins for survival, can be determined with various techniques and targeted effectively with selective BH3-mimetics. Studies have highlighted that anti-apoptotic proteins BCL-XL and MCL-1 are crucial for cervical cancer cell survival. Co-targeting BCL-XL and MCL-1 with selective BH3-mimetics yielded promising results in cervical cancer cell lines. In this review, we focus on the expression levels of the anti-apoptotic proteins in cervical cancer tissues and how to possibly target them with BH3-mimetics.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors*; Proto-Oncogene Proteins c-bcl-2/metabolism; Proto-Oncogene Proteins c-bcl-2/chemistry
  10. Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N
    Trop Life Sci Res, 2020 Oct;31(3):1-13.
    PMID: 33214852 DOI: 10.21315/tlsr2020.31.3.1
    The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  11. Leong SW, Chia SL, Abas F, Yusoff K
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858795 DOI: 10.3390/molecules25173877
    In the present study, we investigated the in-vitro anti-cancer potential of six diarylpentanoids against a panel of BRAF- and KRAS-mutated colorectal cancer cell lines including T84, SW620, LoVo, HT29, NCI-H508, RKO, and LS411N cells. Structure-activity relationship study suggested that the insertions of tetrahydro-4H-thiopyran-4-one and brominated phenyl moieties are essential for better cytotoxicity. Among the evaluated analogs, 2e has been identified as the lead compound due to its low IC50 values of approximately 1 µM across all cancer cell lines and high chemotherapeutic index of 7.1. Anti-proliferative studies on LoVo cells showed that 2e could inhibit cell proliferation and colony formations by inducing G2/M cell cycle arrest. Subsequent cell apoptosis assay confirmed that 2e is a Bcl-2 inhibitor that could induce intrinsic cell apoptosis by creating a cellular redox imbalance through its direct inhibition on the Bcl-2 protein. Further molecular docking studies revealed that the bromophenyl moieties of 2e could interact with the Bcl-2 surface pocket through hydrophobic interaction, while the tetrahydro-4H-thiopyran-4-one fragment could form additional Pi-sulfur and Pi-alkyl interactions in the same binding site. In all, the present results suggest that 2e could be a potent lead that deserves further modification and investigation in the development of a new Bcl-2 inhibitor.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors*; Proto-Oncogene Proteins c-bcl-2/metabolism
  12. Ismail NI, Othman I, Abas F, H Lajis N, Naidu R
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825505 DOI: 10.3390/molecules25173798
    The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  13. Abdul Rahman SF, Muniandy K, Soo YK, Tiew EYH, Tan KX, Bates TE, et al.
    Biochem Biophys Rep, 2020 Jul;22:100756.
    PMID: 32346617 DOI: 10.1016/j.bbrep.2020.100756
    Development of resistance to chemo- and radiotherapy in patients suffering from advanced cervical cancer narrows the therapeutic window for conventional therapies. Previously we reported that a combination of the selective BCL-2 family inhibitors ABT-263 and A-1210477 decreased cell proliferation in C33A, SiHa and CaSki human cervical cancer cell lines. As ABT-263 binds to both BCL-2 and BCL-XL with high affinity, it was unclear whether the synergism of the drug combination was driven either by singly inhibiting BCL-2 or BCL-XL, or inhibition of both. In this present study, we used the BCL-2 selective inhibitor ABT-199 and the BCL-XL selective inhibitor A1331852 to resolve the individual antitumor activities of ABT-263 into BCL-2 and BCL-XL dependent mechanisms. A-1210477 was substituted for the orally bioavailable S63845. Four cervical cancer cell lines were treated with the selective BCL-2 family inhibitors ABT-199, A1331852 and S63845 alone and in combination using 2-dimensional (2D) and 3-dimensional (3D) cell culture models. The SiHa, C33A and CaSki cell lines were resistant to single agent treatment of all three drugs, suggesting that none of the BCL-2 family of proteins mediate survival of the cells in isolation. HeLa cells were resistant to single agent treatment of ABT-199 and A1331852 but were sensitive to S63845 indicating that they depend on MCL-1 for survival. Co-inhibition of BCL-2 and MCL-1 with ABT-199 and S63845, inhibited cell proliferation of all cancer cell lines, except SiHa. However, the effect of the combination was not as pronounced as combination of A1331852 and S63845. Co-inhibition of BCL-XL and MCL-1 with A1331852 and S63845 significantly inhibited cell proliferation of all four cell lines. Similar data were obtained with 3-dimensional spheroid cell culture models generated from two cervical cancer cell lines in vitro. Treatment with a combination of A1331852 and S63845 resulted in inhibition of growth and invasion of the 3D spheroids. Collectively, our data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or BCL-2 may be potentially useful as treatment strategies for the management of cervical cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  14. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Horm Mol Biol Clin Investig, 2020 Jun 29;41(4).
    PMID: 32598308 DOI: 10.1515/hmbci-2020-0009
    BACKGROUND: Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.

    MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.

    RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.

    CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  15. Bakshi HA, Zoubi MSA, Hakkim FL, Aljabali AAA, Rabi FA, Hafiz AA, et al.
    Nutrients, 2020 06 26;12(6).
    PMID: 32604971 DOI: 10.3390/nu12061901
    Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  16. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Jaafar F, et al.
    Sci Rep, 2020 06 02;10(1):8962.
    PMID: 32488024 DOI: 10.1038/s41598-020-65570-4
    Vitamin E acts as an antioxidant and reduces the level of reactive oxygen species (ROS) in Alzheimer's disease (AD). Alpha-tocopherol (ATF) is the most widely studied form of vitamin E besides gamma-tocopherol (GTF) which also shows beneficial effects in AD. The levels of amyloid-beta (Aβ) and amyloid precursor protein (APP) increased in the brains of AD patients, and mutations in the APP gene are known to enhance the production of Aβ. Mitochondrial function was shown to be affected by the increased level of Aβ and may induce cell death. Here, we aimed to compare the effects of ATF and GTF on their ability to reduce Aβ level, modulate mitochondrial function and reduce the apoptosis marker in SH-SY5Y cells stably transfected with the wild-type or mutant form of the APP gene. The Aβ level was measured by ELISA, the mitochondrial ROS and ATP level were quantified by fluorescence and luciferase assay respectively whereas the complex V enzyme activity was measured by spectrophotometry. The expressions of genes involved in the regulation of mitochondrial membrane permeability such as voltage dependent anion channel (VDAC1), adenine nucleotide translocase (ANT), and cyclophilin D (CYPD) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), while the expressions of cyclophilin D (CypD), cytochrome c, Bcl2 associated X (BAX), B cell lymphoma-2 (Bcl-2), and pro-caspase-3 were determined by western blot. Our results showed that mitochondrial ROS level was elevated accompanied by decreased ATP level and complex V enzyme activity in SH-SY5Y cells expressing the mutant APP gene (p c release, the ratio of BAX/Bcl-2, and pro-caspase-3 expression increased in cells expressing mutated APP gene (p Bcl-2 were increased in the following order; SH-SY5Y-APP-WT c and the ratio of BAX/Bcl-2. However, only GTF significantly reduced the expression of CypD and pro-caspase-3, suggestive of its unique role in AD. In conclusion, GTF has an effect that was not shown by ATF and thus suggest its potential role in the development of therapeutic agents for AD.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  17. Hasan M, Kumolosasi E, Jasamai M, Jamal JA, Azmi N, Rajab NF
    Daru, 2020 Jun;28(1):97-108.
    PMID: 31912375 DOI: 10.1007/s40199-019-00320-0
    BACKGROUND: Phytoestrogens are plant compounds that are structurally similar to estrogen and that possess anti-cancer properties. Previous studies have reported that coumestrol, daidzein and genistein could induce cell death by reducing Annexin A1 protein in leukemic cell lines. Annexin A1 (ANXA1) is involved in cell progression, metastasis, and apoptosis in several types of cancer cells. The present study sought to investigate if the effects of phytoestrogens on apoptosis, cell cycle arrest and phagocytosis in ANXA1-knockdown leukemic cells are mediated through ANXA1 or occurred independently.

    METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.

    RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.

    CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  18. Ting XW, Sothiraghagan S, W Md Kasim WM, Muhammed J
    Cureus, 2020 May 24;12(5):e8259.
    PMID: 32596077 DOI: 10.7759/cureus.8259
    Objective To describe the patient demographics, clinical findings, investigations, surgical outcomes, and histopathological findings of seven cases of orbital solitary fibrous tumours. Method This was a retrospective review of seven cases of orbital solitary fibrous tumour, which were followed up in Hospital Serdang, a national oculoplastic centre, from years 2008-2017. Results This study included seven patients with ages between 21 and 35 years old; two were males and five were females. All seven patients presented with painless chronic unilateral proptosis. Radiological imaging of the orbit showed a localized contrast enhancing intraorbital mass. All patients underwent orbitotomy and excisional biopsy. Intraoperative findings showed a well-encapsulated and vascularized mass. Histological findings of spindle-shaped cells were noted. All cases had positive staining for cluster of differentiation (CD) 34, five were positive for CD 99, four were positive for B-cell lymphoma (BCL-2), and five patients had positive staining for S-100. Three of the patients did not have clear margins during the primary operation and subsequently had a recurrence within two years. Conclusion A solitary fibrous tumour is a rare mesenchymal tumour with a pleural origin. The orbit is the most common extrapleural site of the tumour and they are usually benign. Immunohistochemistry is important to differentiate it from other, more aggressive forms of orbital tumours. Regular follow-up is important to monitor for recurrence.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  19. Suraweera CD, Anasir MI, Chugh S, Javorsky A, Impey RE, Hasan Zadeh M, et al.
    FEBS J, 2020 May 15.
    PMID: 32412687 DOI: 10.1111/febs.15365
    Premature programmed cell death or apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Tanapoxvirus (TANV) is a large double-stranded DNA virus belonging to the poxviridae that causes mild Monkeypox-like infections in humans and primates. TANV encodes for a putative apoptosis inhibitory protein 16L. We show that TANV16L is able to bind to a range of peptides spanning the BH3 motif of human pro-apoptotic Bcl-2 proteins, and is able to counter growth arrest of yeast induced by human Bak and Bax. We then determined the crystal structures of TANV16L bound to three identified interactors, Bax, Bim and Puma BH3. TANV16L adopts a globular Bcl-2 fold comprising 7 a-helices, and utilizes the canonical Bcl-2 binding groove to engage pro-apoptotic host cell Bcl-2 proteins. Unexpectedly, TANV16L is able to adopt both a monomeric as well as a domain-swapped dimeric topology where the a1 helix from one protomer is swapped into a neighbouring unit. Despite adopting two different oligomeric forms, the canonical ligand binding groove in TANV16L remains unchanged from monomer to domain-swapped dimer. Our results provide a structural and mechanistic basis for tanapoxvirus mediated inhibition of host cell apoptosis, and reveal the capacity of Bcl-2 proteins to adopt differential oligomeric states whilst maintaining the canonical ligand binding groove in an unchanged state.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  20. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics; Proto-Oncogene Proteins c-bcl-2/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links