Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB
    PMID: 33636491 DOI: 10.1016/j.saa.2021.119543
    The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
    Matched MeSH terms: Quaternary Ammonium Compounds*
  2. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Quaternary Ammonium Compounds/analysis
  3. Lim JK, Chieh DC, Jalak SA, Toh PY, Yasin NH, Ng BW, et al.
    Small, 2012 Jun 11;8(11):1683-92.
    PMID: 22438107 DOI: 10.1002/smll.201102400
    Magnetic collection of the microalgae Chlorella sp. from culture media facilitated by low-gradient magnetophoretic separation is achieved in real time. A removal efficiency as high as 99% is accomplished by binding of iron oxide nanoparticles (NPs) to microalgal cells in the presence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a binder and subsequently subjecting the mixture to a NdFeB permanent magnet with surface magnetic field ≈6000 G and magnetic field gradient <80 T m(-1) . Surface functionalization of magnetic NPs with PDDA before exposure to Chlorella sp. is proven to be more effective in promoting higher magnetophoretic removal efficiency than the conventional procedure, in which premixing of microalgal cells with binder is carried out before the addition of NPs. Rodlike NPs are a superior candidate for enhancing the magnetophoretic separation compared to spherical NPs due to their stable magnetic moment that originates from shape anisotropy and the tendency to form large NP aggregates. Cell chaining is observed for nanorod-tagged Chlorella sp. which eventually fosters the formation of elongated cell clusters.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  4. Wibowo TY, Ridzuan Zakaria, Ahmad Zuhairi Abdullah
    Organomontmorillonites were synthesized by grafting cationic surfactants i.e quaternary ammonium compounds into the interlayer space and were characterized using XRD, FTIR and N2 adsorption/ desorption analysis. The organomontmorillonites were applied as catalyst for the esterification of glycerol (GL) with lauric acid (LA). The catalyst which had symmetrical onium salts (tetrabuthylammoniumbromide, TBAB) gave higher activity than that of unsymmetrical onium salts (cetyltrimethylammoniumbromide, CTAB). Over the TBAB-montmorillonite catalyst, glycerol monolaurate was obtained with a selectivity of about 80%, a lauric acid conversion of about 71% and a glycerol monolaurate yield of about 57%.
    Matched MeSH terms: Quaternary Ammonium Compounds
  5. B Aziz S, H Hamsan M, M Nofal M, San S, Abdulwahid RT, Raza Saeed S, et al.
    Polymers (Basel), 2020 Jul 09;12(7).
    PMID: 32660095 DOI: 10.3390/polym12071526
    In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.
    Matched MeSH terms: Quaternary Ammonium Compounds
  6. Mori IC, Arias-Barreiro CR, Koutsaftis A, Ogo A, Kawano T, Yoshizuka K, et al.
    Chemosphere, 2015 Feb;120:299-304.
    PMID: 25151133 DOI: 10.1016/j.chemosphere.2014.07.011
    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test.
    Matched MeSH terms: Quaternary Ammonium Compounds/toxicity*
  7. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK
    Carbohydr Polym, 2017 Feb 10;157:938-944.
    PMID: 27988011 DOI: 10.1016/j.carbpol.2016.10.032
    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I2) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, JSC of 17.29mAcm-2, open circuit voltage, VOC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD.
    Matched MeSH terms: Quaternary Ammonium Compounds
  8. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Quaternary Ammonium Compounds/isolation & purification*; Quaternary Ammonium Compounds/chemistry
  9. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DW
    Anal Chem, 2015 Jun 2;87(11):5486-90.
    PMID: 25962586 DOI: 10.1021/acs.analchem.5b01162
    In this work, independent radial diffusion at arrayed nanointerfaces between two immiscible electrolyte solutions (nanoITIES) was achieved. The arrays were formed at nanopores fabricated by focused ion beam milling of silicon nitride (SiN) membranes, enabling the reproducible and systematic design of five arrays with different ratios of pore center-to-center distance (rc) to pore radius (ra). Voltammetry across water-1,6-dichlorohexane nanoITIES formed at these arrays was examined by the interfacial transfer of tetrapropylammonium ions. The diffusion-limited ion-transfer current increased with the ratio rc/ra, reaching a plateau for rc/ra ≥ 56, which was equivalent to the theoretical current for radial diffusion to an array of independent nanoITIES. As a result, mass transport to the nanoITIES arrays was greatly enhanced due to the decreased overlap of diffusion zones at adjacent nanoITIES, allowing each interface in the array to behave independently. When the rc/ra ratio increased from 13 to 56, the analytical performance parameters of sensitivity and limit of detection were improved from 0.50 (±0.02) A M(-1) to 0.76 (±0.02) A M(-1) and from 0.101 (±0.003) μM to 0.072 (±0.002) μM, respectively. These results provide an experimental basis for the design of arrayed nanointerfaces for electrochemical sensing.
    Matched MeSH terms: Quaternary Ammonium Compounds
  10. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ
    J Hazard Mater, 2011 May 15;189(1-2):404-13.
    PMID: 21420786 DOI: 10.1016/j.jhazmat.2011.02.052
    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
    Matched MeSH terms: Quaternary Ammonium Compounds
  11. Muhamad N, Walker LR, Pedley KC, Simcock DC, Brown S
    Parasitol Int, 2012 Sep;61(3):487-92.
    PMID: 22562002 DOI: 10.1016/j.parint.2012.04.003
    The initial rate of NH(3)/NH(4)(+) accumulation in a medium containing L(3) Teladorsagia circumcincta was 0.18-0.6 pmol h(-1) larva(-1), which increased linearly with larval density. However it appeared that the larva-generated external concentration of NH(3)/NH(4)(+) did not exceed about 130 μM. The rate of NH(3)/NH(4)(+) accumulation increased with temperature between 4 °C and 37 °C, declined with increasing pH or increasing external NH(3)/NH(4)(+) concentration and was not significantly affected by the concentration of the phosphate buffer or by exsheathing the larvae. We infer from these data that the efflux of NH(3)/NH(4)(+) is a diffusive process and that the secreted or excreted NH(3)/NH(4)(+) is generated enzymatically rather than dissociating from the surface of the nematode. The enzymatic source of the NH(3)/NH(4)(+) is yet to be identified. Since the concentration of NH(3)/NH(4)(+) in the rumen and abomasum is higher than 130 μM, it is unlikely that T. circumcincta contributes to it, but NH(3)/NH(4)(+) may be accumulated from the rumen fluid by the nematode.
    Matched MeSH terms: Quaternary Ammonium Compounds/metabolism*
  12. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK
    Int J Biol Macromol, 2019 Apr 01;126:569-577.
    PMID: 30584947 DOI: 10.1016/j.ijbiomac.2018.12.193
    The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.
    Matched MeSH terms: Quaternary Ammonium Compounds
  13. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
  14. Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH
    Plasmid, 2011 Oct;66(1):38-46.
    PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001
    Plasmid DNA is one of the indispensable components in molecular biology research and a potential biomaterial for gene therapy and DNA vaccination. Both quality and quantity of extracted plasmid DNA are of the great interests in cloning and subsequent expression of genes in vitro and in vivo for basic research and therapeutic interventions. Bacteria with extremely short generation times are the valuable source of plasmid DNA that can be isolated through a number of existing techniques. However, the current methods have some limitations in isolating high quality plasmid DNA since the multimeric plasmid which is believed to be more efficiently transcribed by RNA polymerase than the monomeric form, is almost lost during the extraction process. Recently, we developed a rapid isolation technique for multimeric plasmid based on generation of a 'protein aggregate' using a zwitterionic detergent and alkali. Here we have investigated the roles of different parameters in the whole extraction process to optimise the production of high quality multimeric plasmid DNA. Moreover, we have showed the advantageous effects of nanoparticles to effectively sediment the 'protein aggregate' for smooth elution of multimeric plasmid DNA from it. Finally, quality assessment study has revealed that the isolated multimeric DNA is at least 10 times more transcriptionally active than the monomeric form isolated by the commercially available Qiaget kit.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*
  15. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology; Quaternary Ammonium Compounds/chemistry*
  16. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
    Matched MeSH terms: Quaternary Ammonium Compounds
  17. Mohd Nazri Idris, Abdul Razak Daud, Nur Akma Mahat, Mohd Hafizuddin Ab Ghani, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1593-1598.
    The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
    demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
    research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
    reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
    tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
    BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
    microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
    CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
    mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
    growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
    on biocorrosion of carbon steel pipeline.
    Matched MeSH terms: Quaternary Ammonium Compounds
  18. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p ammonium silane demonstrated to be a potent antibacterial cavity disinfectant and a plaque inhibitor and can be of potential significance in eliminating caries-forming bacteria.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology*
  19. Lee WH, Lai CW, Hamid SBA
    Materials (Basel), 2015 Aug 28;8(9):5702-5714.
    PMID: 28793530 DOI: 10.3390/ma8095270
    WO₃-decorated TiO₂ nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H₂O₂ and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W(6+)) in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO₂ during anodization to produce a uniform nanotubular structure of TiO₂ film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO₂ after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet) 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9) and geometric surface area factor (92.0) exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg(2+) to adsorb onto the catalyst surface to undergo reduction to Hg⁰. The incorporation of WO₃ species onto TiO₂ nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO₂ to the conduction band of WO₃.
    Matched MeSH terms: Quaternary Ammonium Compounds
  20. Jajuli MN, Hussin MH, Saad B, Rahim AA, Hébrant M, Herzog G
    Anal Chem, 2019 06 04;91(11):7466-7473.
    PMID: 31050400 DOI: 10.1021/acs.analchem.9b01674
    A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links