Displaying publications 1 - 20 of 143 in total

Abstract:
Sort:
  1. Abdullah SNF, Ismail A, Juahir H, Lananan F, Hashim NM, Ariffin N, et al.
    Environ Sci Pollut Res Int, 2021 Jul;28(27):35613-35627.
    PMID: 33666850 DOI: 10.1007/s11356-021-12772-6
    Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
    Matched MeSH terms: Rain
  2. Adham MI, Shirazi SM, Othman F, Rahman S, Yusop Z, Ismail Z
    ScientificWorldJournal, 2014;2014:379763.
    PMID: 25152911 DOI: 10.1155/2014/379763
    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.
    Matched MeSH terms: Rain*
  3. Ahmad MA, Yahya WJ, Ithnin AM, Hasannuddin AK, Bakar MAA, Fatah AYA, et al.
    Environ Sci Pollut Res Int, 2018 Aug;25(24):24266-24280.
    PMID: 29948709 DOI: 10.1007/s11356-018-2492-2
    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NOx) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.
    Matched MeSH terms: Rain
  4. Ahmad N, Shaffril HAM, Abu Samah A, Idris K, Abu Samah B, Hamdan ME
    Sci Total Environ, 2020 Jan 10;699:134404.
    PMID: 31678877 DOI: 10.1016/j.scitotenv.2019.134404
    The climate change phenomenon has been occurring in every part of the world, including Malaysia. In particular, changes such as rising temperature, sea level rise, and unstable rain pattern are proven to affect the socio-economic routine of the community. Hence, it is necessary to learn how to adapt to it, especially those who heavily rely on nature stability. The present study examined the adaptation towards climate change among islanders in Malaysia. In addition, the current research was performed quantitatively using a developed questionnaire as the main data collection tool. In this case, a total of 400 islanders were selected as the respondents through a multi-stage sampling technique. The results revealed that the respondents recorded a moderate to high mean score for adaptation aspects namely awareness, dependency and structure. Accordingly, a number of recommendations that were highlighted can be utilized as a basis to develop community adaptation policy that is in line with the islanders' need, ability, and interests.
    Matched MeSH terms: Rain
  5. Aiken SR, Frost DB, Leigh CH
    Soc Sci Med Med Geogr, 1980 Sep;14D(3):307-16.
    PMID: 7455728
    Matched MeSH terms: Rain*
  6. Ajorlo M, Abdullah RB, Yusoff MK, Halim RA, Hanif AH, Willms WD, et al.
    Environ Monit Assess, 2013 Oct;185(10):8649-58.
    PMID: 23604787 DOI: 10.1007/s10661-013-3201-8
    This study investigates the applicability of multivariate statistical techniques including cluster analysis (CA), discriminant analysis (DA), and factor analysis (FA) for the assessment of seasonal variations in the surface water quality of tropical pastures. The study was carried out in the TPU catchment, Kuala Lumpur, Malaysia. The dataset consisted of 1-year monitoring of 14 parameters at six sampling sites. The CA yielded two groups of similarity between the sampling sites, i.e., less polluted (LP) and moderately polluted (MP) at temporal scale. Fecal coliform (FC), NO3, DO, and pH were significantly related to the stream grouping in the dry season, whereas NH3, BOD, Escherichia coli, and FC were significantly related to the stream grouping in the rainy season. The best predictors for distinguishing clusters in temporal scale were FC, NH3, and E. coli, respectively. FC, E. coli, and BOD with strong positive loadings were introduced as the first varifactors in the dry season which indicates the biological source of variability. EC with a strong positive loading and DO with a strong negative loading were introduced as the first varifactors in the rainy season, which represents the physiochemical source of variability. Multivariate statistical techniques were effective analytical techniques for classification and processing of large datasets of water quality and the identification of major sources of water pollution in tropical pastures.
    Matched MeSH terms: Rain
  7. Al Harthy, K. M., Siti Aishah, H., Yahya, A., Roslan, I., Al Yahyai, R.
    MyJurnal
    Banana is one of the most important food crops after rice, wheat and corn around the world. It is susceptible to a wide spectrum of non-infectious problems such as abiotic stresses resulting in restricting growth and production. Studies were conducted to determine the effects of four salinity levels (0.17 (control), 3.0, 6.0, and 9.0 dS m-1) on morphological characteristics of four banana cultivars at vegetative growth stage. Banana cultivars from the Cavendish group (Williams, Malindi) and plantains group (FHIA18 and Diwan) were grown in 61 x 76 cm polyethylene bags filled with soil mixture comprising of top soil, sand and peat moss (3:1:2 v/v), with pH ranging from 6 - 6.5 and EC 0.02 mScm-1. The experiment was carried out under a rain-shelter in split-plot design with three replicates. Plants were irrigated manually. Data were collected at 3, 6 and 9 months after transplanting. The results revealed that, the number of leaves, stem height, stem girth and total leaf area were significantly affected by salinity, variety and plant age. Significant interaction was also found between salinity and variety, salinity and plant age, as well as variety and plant age. The morphological characteristics of banana were negatively affected by higher salinity levels (6.0 and 9.0 dS m-1). Under similar salinity level, cultivar Malindi had higher number of leaves, stem height, stem girth and total leaf area as compared to cultivar Williams. Among plantains banana, cultivar FHIA18 was more tolerance to high salinity levels than Diwan cultivar, while Malindi from Cavendish group shows high salt tolerant than Williams. Therefore cultivars Malindi and FHIA18 could be grown in arid and semiarid environment depend on their tolerance to high salinity level above 1.0 dS m-1.
    Matched MeSH terms: Rain
  8. Alias N, Liu A, Egodawatta P, Goonetilleke A
    J Environ Manage, 2014 Feb 15;134:63-9.
    PMID: 24463850 DOI: 10.1016/j.jenvman.2013.12.034
    The validity of using rainfall characteristics as lumped parameters for investigating the pollutant wash-off process such as first flush occurrence is questionable. This research study introduces an innovative concept of using sector parameters to investigate the relationship between the pollutant wash-off process and different sectors of the runoff hydrograph and rainfall hyetograph. The research outcomes indicated that rainfall depth and rainfall intensity are two key rainfall characteristics which influence the wash-off process compared to the antecedent dry period. Additionally, the rainfall pattern also plays a critical role in the wash-off process and is independent of the catchment characteristics. The knowledge created through this research study provides the ability to select appropriate rainfall events for stormwater quality treatment design based on the required treatment outcomes such as the need to target different sectors of the runoff hydrograph or pollutant species. The study outcomes can also contribute to enhancing stormwater quality modelling and prediction in view of the fact that conventional approaches to stormwater quality estimation is primarily based on rainfall intensity rather than considering other rainfall parameters or solely based on stochastic approaches irrespective of the characteristics of the rainfall event.
    Matched MeSH terms: Rain
  9. Aniza Ibrahim, Muhammad Mukhlisin, Othman Jaafar
    Sains Malaysiana, 2014;43:1477-1484.
    Infiltration caused by rainfall will lead to the changes of moisture content and soil pore water pressure or matric suction of the soil. These changes indicate the behavior of the soil especially during wetting and drying process. This paper presents the experimental test result of rain water infiltration into soil column for two samples of soils. The main objectives were to study the effect of rainfall intensity and duration of soil infiltration process for the forest soil and to compare its result to the gravelly sand. Infiltration experimental in this study involved three main components; water supply system, soil column and instrumentations, including percolation collection system. This study uses two types of tensiometers; 5 and 10 cm long. The results of TDR and tensiometers which were used to obtained moisture content and matric suction, respectively, shows that the system was successfully developed. For the forest soil, the result showed that moisture content of the top section is higher compared with the other sections. On the other hand, for gravelly sand, the moisture content in middle section is higher compared with the top and bottom section of the soil. Meanwhile, matric suction for both soils dropped during rainfall and gradually increases towards drying process. Other than that the comparison of soil matric suction between 5 and 10 cm tensiometers shows significant results for gravelly sand compared to forest soil.
    Matched MeSH terms: Rain
  10. Baguma D, Hashim JH, Aljunid SM, Loiskandl W
    Sci Total Environ, 2013 Jan 1;442:96-102.
    PMID: 23178827 DOI: 10.1016/j.scitotenv.2012.10.004
    The need for water continues to become more acute with the changing requirements of an expanding world population. Using a logistical analysis of data from 301 respondents from households that harvest rainwater in Uganda, the relationship between dependent variables, such as water management performed as female-dominated practices, and independent variables, such as years of water harvesting, family size, tank operation and maintenance, and the presence of local associations, was investigated. The number of years of water harvesting, family size, tank operation and maintenance, and presence of local associations were statistically significantly related to adequate efficient water management. The number of years of water harvesting was linked to women's participation in household chores more than to the participation of men, the way of livelihoods lived for many years. Large families were concurrent with a reduction in water shortages, partially because of the availability of active labour. The findings also reveal important information regarding water-related operations and maintenance at the household level and the presence of local associations that could contribute some of the information necessary to minimise water-related health risks. Overall, this investigation revealed important observations about the water management carried out by women with respect to underlying safe-water shortages, gender perspectives, and related challenges in Uganda that can be of great importance to developing countries.
    Matched MeSH terms: Rain
  11. Bienaymé A, Servant M
    DOI: 10.1007/BF01884062
    During two years the authors have assembled monthly analytical data of oilpalms, from 15 different stations. The determinations spread as far as the French, Portuguese and Spanish territory in Africa and British Malaya also. The following analyses were carried out: iodine number, titer point, melting point and the carotenoids of these oils, according to origine, race and time of gathering. As to iodine number and amount of carotenoid, the race is decisive for these data; the oils from the natural stock of the Ivory Coast have a higher iodine number (57-60). The oils from the natural stock of Togo, Dahomey, Portuguese and French Guinea are richer in carotene (up to 0.16, even 0.19%) with medium iodine number (54-56). The oils from the industrial plantations, with selected trees of the race Dura-Deli, from the Far East as well as from the Ivory Coast, have lower iodine numbers (52-53) and are poor in carotene (0.05). South of the equator in Africa, all analysed races of oil palms had a lower iodine number (53-55) and were poor in carotene (0.05). During one year the amount of carotene fluctuates about one third of its maximum; this maximum is rather striking in Togo and Dahomey; it is to be found from January to May; period of high production of the oil in the Palm groves, e.g. in the dry season with warm climate and good insolation. Heavy rain-showers effect a rapid decrease of the contents of carotene after six weeks (duration of the formation of the fruit). Furthermore, the residual oils (extracted by solvents) were analysed; they are 2 to 3 times richer in carotenoids than the common palm oil; but the contents of β-carotene seems somewhat lower. The authors think it possible to find exactly defined uses for the different oils. © 1958 Uitgeverij Dr. W. Junk.
    Matched MeSH terms: Rain
  12. Bong LJ, Zairi J
    Trop Biomed, 2010 Aug;27(2):317-25.
    PMID: 20962731 MyJurnal
    House flies were collected from April 2007-April 2008 from two poultry farms (Balik Pulau and Juru) in the state of Penang. The resistance level of the first generation offspring was evaluated against DDT, malathion, propoxur, and permethrin using the topical application method. The resistance ratio (RR) of the Balik Pulau strain house flies for propoxur, malathion and DDT ranged from 10.28 to 99.00, 7.83 to 47.01 and 6.05 to 31.10, respectively. Resistance to propoxur and malathion in house fly was attributed to cross resistance to organophosphate insecticides used in the farm. Increased metabolic detoxification might be the mechanism involved in DDT resistance due to excessive application of cypermethrin formulation. The RR of the Juru strain for propoxur, malathion and DDT was in a decreasing pattern throughout the study period, ranging from 5.58 to 83.38, 15.19 to 27.82, and 10.04 to 22.69, respectively. Permethrin appeared to be the most potent insecticide in controlling house fly in both the Balik Pulau (RR=0.50 to 1.96) and Juru poultry farms (RR=0.64 to 2.40). The fluctuations of insecticides resistance in house fly was also found to correlate with climatic factors due to its rapid breeding. Relative humidity exhibited positive correlation indices with the changes in the resistance level for DDT (r=0.481, p<0.05), malathion (r=0.698, p<0.01), and permethrin (r=0.580, p<0.05) in Balik Pulau. Similarly, relative humidity in Juru also showed strong correlation with the RR for DDT (r=0.900, p<0.01), malathion (r=0.762, p<0.05), permethrin (r=0.760, p<0.05), and propoxur (r=0.897, p<0.01).
    Matched MeSH terms: Rain
  13. Brandon-Mong GJ, Littlefair JE, Sing KW, Lee YP, Gan HM, Clare EL, et al.
    Bull. Entomol. Res., 2018 Dec;108(6):792-799.
    PMID: 29441836 DOI: 10.1017/S000748531800010X
    Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
    Matched MeSH terms: Rain*
  14. Ch'ng TW, Mosavi SA, Noor Azimah AA, Azlan NZ, Azhany Y, Liza-Sharmini AT
    Med J Malaysia, 2013 Oct;68(5):410-4.
    PMID: 24632871 MyJurnal
    INTRODUCTION: Acute angle closure (AAC) without prompt treatment may lead to optic neuropathy. Environmental factor such as climate change may precipitate pupillary block, the possible mechanism of AAC.

    OBJECTIVE: To determine the association of northeast monsoon and incidence of AAC in Malaysia.

    MATERIALS AND METHODS: A retrospective study was conducted on AAC patients admitted to two main tertiary hospitals in Kelantan, Malaysia between January 2001 and December 2011. The cumulative number of rainy day, amount of rain, mean cloud cover and 24 hours mean humidity at the estimated day of attack were obtained from the Department of Meteorology, Malaysia.

    RESULTS: A total 73 cases of AAC were admitted with mean duration of 4.1SD 2.0 days. More than half have previous history of possibility of AAC. There was higher incidence of AAC during the northeast monsoon (October to March). There was also significant correlation of number of rainy day (r=0.718, p<0.001), amount of rain (r=0.587, p<0.001), cloud cover (r=0.637, p<0.001), mean daily global radiation (r=- 0.596, P<0.001), 24 hours mean temperature (r=-0.298, p=0.015) and 24 hours mean humidity (r=0.508, p<0.001) with cumulative number of admission for AAC for 12 calendar months.

    CONCLUSION: Higher incidence of AAC during northeast monsoon suggested the effect of climate as the potential risk factor. Prompt treatment to arrest pupillary block and reduction of the intraocular pressure is important to prevent potential glaucomatous damage. Public awareness of AAC and accessibility to treatment should be part of preparation to face the effect of northeast monsoon.
    Matched MeSH terms: Rain
  15. Chai CT, Putuhena FJ, Selaman OS
    Water Sci Technol, 2017 Dec;76(11-12):2988-2999.
    PMID: 29210686 DOI: 10.2166/wst.2017.472
    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
    Matched MeSH terms: Rain*
  16. Chang CJ, Hsu HH, Cheah W, Tseng WL, Jiang LC
    Sci Rep, 2019 04 01;9(1):5421.
    PMID: 30931981 DOI: 10.1038/s41598-019-41889-5
    In addition to monsoon-driven rainfall, the Maritime Continent (MC) is subject to heavy precipitation caused by the Madden-Julian Oscillation (MJO), a tropical convection-coupled circulation that propagates eastward from the Indian to the Pacific Ocean. This study shows that riverine runoff from MJO-driven rainfall in the western MC significantly enhances phytoplankton biomass not only in the coastal regions but as far as the nutrient-poor Banda Sea, located 1,000 km downstream of the riverine source. We present observational estimates of the chlorophyll-a concentration in the Banda Sea increasing by 20% over the winter average within an MJO life cycle. The enhancement of phytoplankton in the central Banda Sea is attributed to two coinciding MJO-triggered mechanisms: enhanced sediment loading and eastward advection of waters with high sediment and chlorophyll concentrations. Our results highlight an unexpected effect of MJO-driven rainfall on the downstream oceanic region. This finding has significant implications for the marine food chain and biogeochemical processes in the MC, given the increasing deforestation rate and projections that global warming will intensify both the frequency and strength of MJO-driven rainfall in the MC.
    Matched MeSH terms: Rain*
  17. Chen M, Atiqul Haq SM, Ahmed KJ, Hussain AHMB, Ahmed MNQ
    PLoS One, 2021;16(10):e0258196.
    PMID: 34673797 DOI: 10.1371/journal.pone.0258196
    Climate change is likely to worsen the food security situation through its impact on food production, which may indirectly affect fertility behaviour. This study examines the direct and indirect effects of climate change (e.g., temperature and precipitation) via the production of major crops, as well as their short- and long-term effects on the total fertility rate (TFR) in Bangladesh. We used structural equation modelling (SEM) to perform path analysis and distinguish the direct influence of climate change on fertility and its indirect influence on fertility through food security. We also applied the error correction model (ECM) to analyze the time-series data on temperature and precipitation, crop production and fertility rate of Bangladesh from 1966 to 2015. The results show that maximum temperature has a direct effect and indirect negative effect-via crop production-on TFR, while crop production has a direct positive effect and indirect negative effect-via infant mortality-on TFR. In the short term, TFR responds negatively to the maximum temperature but positively in the long term. The effect of rainfall on TFR is found to be direct, positive, but mainly short-term. Although indicators of economic development play an important part in the fertility decline in Bangladesh, some climate change parameters and crop production are non-negligible factors.
    Matched MeSH terms: Rain
  18. Cherenet T, Sani RA, Panandam JM, Nadzr S, Speybroeck N, van den Bossche P
    Onderstepoort J Vet Res, 2004 Dec;71(4):307-12.
    PMID: 15732457
    During a period of four consecutive years, trypanosomosis surveys were conducted in a tsetse-infested and tsetse-free area of the Amhara Region of north-west Ethiopia. In each study area randomly selected communal cattle were sampled and their blood was investigated using parasitological diagnostic methods. At the same time the population of biting flies was sampled. The monthly average prevalence of trypanosome infections in cattle did not differ significantly between study areas. In both study areas, the prevalence of trypanosome infections was highest during the long rainy season. Trypanosome infections were mainly due to Trypanosoma vivax and they significantly reduced the average packed cell volume and the body condition of the animals. The monthly prevalence of infection was correlated with the density of biting flies, such as Tabanidae and Stomoxys spp., in the preceding month suggesting an important role of mechanical transmission in the epidemiology of trypanosomosis in both areas.
    Matched MeSH terms: Rain
  19. Chiang GL, Samarawickrema WA, Mak JW, Cheong WH, Sulaiman I, Yap HH
    Ann Trop Med Parasitol, 1986 Feb;80(1):117-21.
    PMID: 2873797
    Field observations were made on Coquillettidia crassipes during a study of Mansonia in a swamp forest ecotype in Tanjong Karang. There was an increase in abundance in July consistent with the increase in abundance of Mansonia and an increase in rainfall. The biting cycle showed a dramatic early peak during the period 1900-2000 hours. The probability of daily survival through one day for the first three gonotrophic cycles was 0.770, 0.722 and 0.759. Two of the 54 Cq. crassipes dissected were infective, with two and 25 L3 larvae of Brugia. Both subperiodic B. malayi and B. pahangi developed into L3 larvae in laboratory bred Cq. crassipes. The index of experimental infection was higher for B. pahangi. Mansonia bonneae and Ma. uniformis showed higher indices of experimental infection than Cq. crassipes for subperiodic B. malayi. It is concluded that in an endemic area with a high density of Cq. crassipes it could act as a secondary vector of Brugian filariasis.
    Matched MeSH terms: Rain
  20. Chivers DJ, Raemaekers JJ, Aldrich-Blake FP
    Folia Primatol., 1975;23(1-2):1-49.
    PMID: 1140747
    Long-term observations are presented on the behaviour of the siamang ape, Symphalangus syndactylus, in the lowland forest of central Malaya. The data were collected during two dry and three fruiting seasons between 1969 and 1973 inclusive on two groups with adjacent ranges; comparisons are made within and between sample periods, and between groups. The influence of weather on daily activities is considered. Food intake is analysed in terms of number of food trees, number of visits to these trees, and the cumulative time spent feeding on various food categories. Ranging behaviour is investigated in terms of distance travelled, area covered, and distribution of time and of food trees about the range. The occurrence of calling is described and compared with that of the white-handed gibbon in the same area. A discussion ensues on each of these aspects of behaviour in turn. Emphasis is laid on the similarity of behaviour of the two groups at any one time, and on the degree of their response to the fluctuations of environment variables. Finally, the application to siamang of ranging concepts currently used in animal behaviour is considered briefly.
    Matched MeSH terms: Rain
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links