Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
    Matched MeSH terms: Saccharum
  2. Almakki, Asma, Mirghani, Mohamed E.S., Kabbashi, Nassereldeen A.
    MyJurnal
    Citric acid (CA) has a high demand due to its various uses in the food and pharmaceutical industries. However, the natural supply of CA is minimal compared to its growing industrial demand. The increasing demand for CA can be fulfilled by using biotechnological processes. This study utilized liquid state bioconversion by Aspergillus niger for CA production using sugarcane molasses as the primary substrate. Sugarcane molasses which is agricultural waste consists of significant proportion of organic matters such as lipids and carbohydrates. This makes sugarcane molasses as a potential and alternative source of producing CA at a lower cost. In this study, statistical optimization was applied to improve CA production using submerged fermentation in shake flasks. Aspergillus niger was cultured in potato dextrose agar. Then, inoculum spores were introduced into the fermentation media for a specific duration according to the experimental design from Central Composite Design (CCD) tool under Response Surface Methodology (RSM) in Design Expert 6.0 software. Three parameters were chosen to be optimized at 32⁰C i.e.agitation rate (160, 80, 200 rpm), substrate concentration (47, 60, 73%) and fermentation time (24, 72, 120 h). High Performance Liquid Chromatography (HPLC)and Fourier-transform infrared spectroscopy(FTIR) analyses were conducted to measure CA yield. The optimization study showed that the media incubated for 72 hours with a substrate concentration of 60% and an agitation speed of 180 rpm produced the highest CA yield(21.2 g/L).The analysis of variance (ANOVA) also showed that CCD quadratic model was significant with P-value< 0.0104 and R2is0.8964.
    Matched MeSH terms: Saccharum
  3. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, et al.
    Sci Rep, 2020 12 15;10(1):21960.
    PMID: 33319818 DOI: 10.1038/s41598-020-78912-z
    The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
    Matched MeSH terms: Saccharum
  4. Siti Munirah Abdul Basir, Muhammad Safwan Abdul Rahman, Wan Azdie Mohd Abu Bakar, Nor Azwani Mohd Shukri
    MyJurnal
    Traditional postpartum practices generally involve food proscriptions and prescriptions. Certain foods are prohibited due to their properties such as “windy”, “cold” and “hot”. As lactating mother needs higher energy and protein intake, this practice may impact their ability to meet their nutritional requirements. Consequently, their health may not be fully restored, wound healing would be slowed, and lactation success may be interfered. This study was conducted in Kuantan, Pahang, to investigate Malay mothers’ perception on confinement dietary practices during postpartum period. A total of 80 respondents aged between 23-43 years old were interviewed using a questionnaire which consisted of an extensive list of food items. It was found that 100% of respondents mentioned that they do observe the traditional postpartum practices after childbirth with most of them (63.0%) chose to confine for up to 44 days. Flavored rice, roti canai and various types of noodle were generally avoided during postpartum period due to their ‘oily/fatty’ property. Tubers, and most fruits and vegetables were also avoided due to their ‘cold’ property. Moreover, the famous ‘reason’ for exclusion of fish was ‘bisa’ and ‘causing itchiness’ for seafood. Milk and dairy products were included in majority of respondents’ diet. Out of 80, 43 (53.8%) respondents avoided soy sauce because it was believed to give negative effect on wound healing. Other than
    that, iced drink, tea and sugarcane drink were avoided due to their ‘cold’ and ‘sharp/sour’ properties. In addition, statistical tests of all food items show that there is no difference in terms of level of acceptance for each food between women delivered via normal delivery or caesarean section. It is concluded that postpartum food taboo beliefs are still prevalent among Malay women. Extensive food prohibition and restriction causes limited food choices which may affect mothers’ nutritional intake. Thus, a more balanced diet should be recommended for Malay mothers during postpartum period to ensure adequate nutrient intake, as much as culturally acceptable.
    Matched MeSH terms: Saccharum
  5. Wong WT, Ismail M, Tohit ER, Abdullah R, Zhang YD
    PMID: 27800004
    Background. Vascular occlusion or thrombosis was often attributed to uncontrolled platelet activation. Influence of sugarcane policosanol extract on platelet was reported but little was known of rice bran policosanol, particularly its mechanisms of actions on platelet activities. Objective. Antiplatelet mechanisms of rice bran policosanol extract (RBE) were studied using hyperlipidemic Sprague Dawley rats. Ex vivo platelet aggregation, platelet count (PC), bleeding time (BT), and coagulation time were assayed. Serum eicosanoids and other aggregation-related metabolites levels were quantified. Design. Rats were divided into 6 groups for comparisons (vehicle control Tween 20/H2O, high dose policosanol 500 mg/kg, middle dose policosanol 250 mg/kg, low dose policosanol 100 mg/kg, and positive control aspirin 30 mg/kg). Results. Low dose 100 mg/kg of RBE inhibited aggregation by 42.32 ± 4.31% and this was comparable with the effect of 30 mg/kg aspirin, 43.91 ± 5.27%. Results showed that there were no significant differences in PC, BT, and coagulation time among various groups after RBE treatment. Serum thromboxane A2 was attenuated while prostacyclin level increased upon RBE treatment. Conclusions. RBE reduced ex vivo ADP-induced platelet aggregation without giving adverse effects. No changes in full blood count suggested that rice bran policosanol did not disturb biological blood cell production and destruction yet it reduced aggregation through different mechanisms.
    Matched MeSH terms: Saccharum
  6. Foo KY, Lee LK, Hameed BH
    Bioresour Technol, 2013 Apr;134:166-72.
    PMID: 23500574 DOI: 10.1016/j.biortech.2013.01.139
    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.
    Matched MeSH terms: Saccharum/chemistry*
  7. Jiang J, Ridley AW, Tang H, Croft BJ, Johnson KN
    Arch Virol, 2008;153(5):839-48.
    PMID: 18299794 DOI: 10.1007/s00705-008-0058-1
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management.
    Matched MeSH terms: Saccharum/virology
  8. Doni F, Isahak A, Che Mohd Zain CR, Mohd Ariffin S, Wan Mohamad WN, Wan Yusoff WM
    Springerplus, 2014;3:532.
    PMID: 25279323 DOI: 10.1186/2193-1801-3-532
    BACKGROUND: Trichoderma sp. SL2 has been previously reported to enhance rice germination, vigour, growth and physiological characteristics. The use of Potato Dextrose Agar as carrier of Trichoderma sp. SL2 inoculant is not practical for field application due to its short shelf life and high cost. This study focuses on the use of corn and sugarcane bagasse as potential carriers for Trichoderma sp. SL2 inoculants.

    FINDINGS: A completely randomized design was applied for this study. Trichoderma sp. SL2 suspension mixed with corn and sugarcane bagasse were used as treatment mixture in soil. Growth parameters including rice seedling height, root length, wet weight, leaf number and biomass were measured and compared to control. The results showed that Trichoderma sp. SL2 mixed with corn significantly enhanced rice seedlings root length, wet weight and biomass compared to Trichoderma sp. SL2 mixed with sugarcane bagasse and control.

    CONCLUSION: Corn can be a potential carrier for Trichoderma spp. inoculants for field application.

    Matched MeSH terms: Saccharum
  9. Liew, E. W. T.
    MyJurnal
    Current ethanol production processes utilizing crops such as sugar cane and corn starch have been well established over the decade. Other crop such as cassava is a potential candidate in producing ethanol. However, thermal processes are required to hydrolyze starch for the production of fermentable sugars. The processes are energy intensive and could lead to undesirable by-products generation. In this work, the hydrolysis of cassava starch is studied following an experimental design as a statistical problem solving approach. Central composite design (CCD) is used in order to select the most important variables from the simultaneous study on the effect and influence of operating conditions of bioreactor utilized, namely, pH, temperature and substrate concentration, as well as to optimize the process of cassava starch hydrolysis. From the results obtained, it can be concluded that the cassava starch hydrolysis is enhanced by pH and temperature. Model validations show good agreement between experimental results and the predicted responses.
    Matched MeSH terms: Saccharum
  10. Mohd Hassan FW, Muggundha Raoov, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al.
    J Sep Sci, 2018 Oct;41(19):3751-3763.
    PMID: 30125466 DOI: 10.1002/jssc.201800326
    This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations 
    Matched MeSH terms: Saccharum
  11. Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P
    Plant Dis, 2001 Nov;85(11):1177-1180.
    PMID: 30823163 DOI: 10.1094/PDIS.2001.85.11.1177
    Sugarcane yellow leaf virus (SCYLV) was detected for the first time in 1996 in the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) sugarcane quarantine at Montpellier by reverse transcription-polymerase chain reaction (RT-PCR) in varieties from Brazil, Florida, Mauritius, and Réunion. Between 1997 and 2000, the virus was found by RT-PCR and/or tissue-blot immunoassay (TBIA) in additional varieties from Barbados, Cuba, Guadeloupe, Indonesia, Malaysia, Philippines, Puerto Rico, and Taiwan, suggesting a worldwide distribution of the pathogen. An excellent correlation was observed between results obtained for the two diagnostic techniques. However, even though only a few false negative results were obtained by either technique, both are now used to detect SCYLV in CIRAD's sugarcane quarantine in Montpellier. The pathogen was detected by TBIA or RT-PCR in all leaves of sugarcane foliage, but the highest percentage of infected vascular bundles was found in the top leaves. The long hot water treatment (soaking of cuttings in water at 25°C for 2 days and then at 50°C for 3 h) was ineffective in eliminating SCYLV from infected plants. Sugarcane varieties from various origins were grown in vitro by apical bud culture and apical meristem culture, and the latter proved to be the most effective method for producing SCYLV-free plants.
    Matched MeSH terms: Saccharum
  12. Chong KF, Lee CY
    J Econ Entomol, 2009 Aug;102(4):1586-90.
    PMID: 19736772
    An evaluation of several insecticides, namely, 0.01% fipronil, 0.05% indoxacarb, and 2% boric acid in liquid bait formulations were carried out against field populations of the longlegged ant, Anoplolepis gracilipes (Fr. Smith) (Hymenoptera: Formicidae). The baits were formulated in brown cane sugar solution (50%, wt:wt) and placed in an experimental bait station. Each bait was evaluated against populations of A. gracilipes at four buildings. Fipronil, indoxacarb, and boric acid were effective against A. gracilipes, with > 90% reduction of workers within 3 d posttreatment. Total reduction (100%) was achieved within 7 d for fipronil, 14 d for indoxacarb, and 56 d for boric acid. The performance of fipronil and indoxacarb baits did not differ significantly (P > 0.05) in all postbaiting sampling intervals. Reduction of A. gracilipes resulted in an increase in other ant species [Monomorium pharaonis (L.), Monomorium floricola (Jerdon), Monomorium orientale Mayr, Monomorium destructor (Jerdon), Tapinoma indicum Forel, Pheidole sp., and Camponotus sp.] at the baited locations.
    Matched MeSH terms: Saccharum
  13. Salihu A, Abbas O, Sallau AB, Alam MZ
    3 Biotech, 2015 Dec;5(6):1101-1106.
    PMID: 28324400 DOI: 10.1007/s13205-015-0294-5
    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.
    Matched MeSH terms: Saccharum
  14. Ishak NAIM, Kamarudin SK, Timmiati SN, Karim NA, Basri S
    J Adv Res, 2021 Feb;28:63-75.
    PMID: 33364046 DOI: 10.1016/j.jare.2020.06.025
    Platinum is the most commonly used catalyst in fuel cell application. However, platinum is very expensive, thus limits the commercialisation of fuel cell system due to the cost factor. This study introduces a biosynthesis platinum from plant extracts that can reduce the cost of platinum production compared to the conventional method and the hazardous during the production of the catalyst. The biogenic platinum was tested on a Direct Methanol Fuel Cell. Advanced biogenic of Pt nano-cluster was synthesized through a novel and facile of one-pot synthesis bio-reduction derived from natural source in the form of plant extracts as reducing agent. Several selected plant extracts drawn from agricultural waste such as banana peel, pineapple peels and sugarcane bagasse extracts were comparatively evaluated on the ability of phytochemical sources of polyphenols rich for the development of single-step synthesis for Pt NPs. Notably, the biogenic Pt NPs from sugar cane bagasse has superior electro-catalytic activity, the enhanced utilization efficiency of Pt and appreciable stability towards methanol oxidation reaction, whose ECSA value approximates 94.58 m2g-1, mass activity/specific activity (398.20 mAmg-1/0.8471 mA/cm2Pt) which greater than commercial Pt black (158.12 mAmg-1/1.41 mA/cm2Pt).
    Matched MeSH terms: Saccharum
  15. Ezebor F, Khairuddean M, Abdullah AZ, Boey PL
    Bioresour Technol, 2014 Apr;157:254-62.
    PMID: 24561631 DOI: 10.1016/j.biortech.2014.01.110
    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil.
    Matched MeSH terms: Saccharum/chemistry*
  16. Heng MH, Baharuddin S, Latiffah Z
    Genet. Mol. Res., 2012;11(1):383-92.
    PMID: 22370941 DOI: 10.4238/2012.February.16.4
    Fusarium species section Liseola namely F. fujikuroi, F. proliferatum, F. andiyazi, F. verticillioides, and F. sacchari are well-known plant pathogens on rice, sugarcane and maize. In the present study, restriction analysis of the intergenic spacer regions (IGS) was used to characterize the five Fusarium species isolated from rice, sugarcane and maize collected from various locations in Peninsular Malaysia. From the analysis, and based on restriction patterns generated by the six restriction enzymes, Bsu151, BsuRI, EcoRI, Hin6I, HinfI, and MspI, 53 haplotypes were recorded among 74 isolates. HinfI showed the most variable restriction patterns (with 11 patterns), while EcoRI showed only three patterns. Although a high level of variation was observed, it was possible to characterize closely related species and isolates from different species. UPGMA cluster analysis showed that the isolates of Fusarium from the same species were grouped together regardless of the hosts. We conclude that restriction analysis of the IGS regions can be used to characterize Fusarium species section Liseola and to discriminate closely related species as well as to clarify their taxonomic position.
    Matched MeSH terms: Saccharum/microbiology
  17. Ali N, El-Harbawi M, Jabal AA, Yin CY
    Environ Technol, 2012 Feb-Mar;33(4-6):481-6.
    PMID: 22629620
    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.
    Matched MeSH terms: Saccharum/chemistry*
  18. Sanagi MM, Abbas HH, Ibrahim WA, Aboul-Enien HY
    Food Chem, 2012 Jul 15;133(2):557-62.
    PMID: 25683433 DOI: 10.1016/j.foodchem.2012.01.036
    Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
    Matched MeSH terms: Saccharum/chemistry*
  19. Subari N, Mohamad Saleh J, Md Shakaff AY, Zakaria A
    Sensors (Basel), 2012;12(10):14022-40.
    PMID: 23202033 DOI: 10.3390/s121014022
    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
    Matched MeSH terms: Saccharum/chemistry
  20. Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, et al.
    Theor Appl Genet, 2020 Jan;133(1):187-199.
    PMID: 31587087 DOI: 10.1007/s00122-019-03450-w
    KEY MESSAGE: A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
    Matched MeSH terms: Saccharum/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links