Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA
    Int J Nanomedicine, 2016;11:2279-304.
    PMID: 27307730 DOI: 10.2147/IJN.S105016
    Ethosomal systems are novel lipid vesicular carriers containing a relatively high percentage of ethanol. These nanocarriers are especially designed for the efficient delivery of therapeutic agents with different physicochemical properties into deep skin layers and across the skin. Ethosomes have undergone extensive research since they were invented in 1996; new compounds were added to their initial formula, which led to the production of new types of ethosomal systems. Different preparation techniques are used in the preparation of these novel carriers. For ease of application and stability, ethosomal dispersions are incorporated into gels, patches, and creams. Highly diverse in vivo models are used to evaluate their efficacy in dermal/transdermal delivery, in addition to clinical trials. This article provides a detailed review of the ethosomal systems and categorizes them on the basis of their constituents to classical ethosomes, binary ethosomes, and transethosomes. The differences among these systems are discussed from several perspectives, including the formulation, size, ζ-potential (zeta potential), entrapment efficiency, skin-permeation properties, and stability. This paper gives a detailed review on the effects of ethosomal system constituents, preparation methods, and their significant roles in determining the final properties of these nanocarriers. Furthermore, the novel pharmaceutical dosage forms of ethosomal gels, patches, and creams are highlighted. The article also provides detailed information regarding the in vivo studies and clinical trials conducted for the evaluation of these vesicular systems.
    Matched MeSH terms: Skin Absorption
  2. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Skin Absorption
  3. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Skin Absorption
  4. Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA
    Sci Rep, 2023 Dec 20;13(1):22730.
    PMID: 38123572 DOI: 10.1038/s41598-023-49328-2
    Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.
    Matched MeSH terms: Skin Absorption
  5. Al-Tahami BA, Yvonne-Tee GB, Halim AS, Ismail AA, Rasool AH
    Methods Find Exp Clin Pharmacol, 2010 Apr;32(3):181-5.
    PMID: 20448860 DOI: 10.1358/mf.2010.32.3.1423887
    Iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) combined with laser Doppler fluximetry (LDF) is a tool used to determine microvascular endothelial function. Our aim was to study the reproducibility of different parameters of this technique using iontophoresis with low current strength on the forearm skin of healthy subjects. Baseline skin perfusion was done before application of five current pulses with 1 min of current-free interval. Current strength of 0.007 mA, current density of 0.01 mA/cm(2) and charge density of 6 mC/cm(2) were used, along with 1% ACh and 1% SNP. The absolute maximum change in perfusion (max), percent change in perfusion (% change), peak change in perfusion (peak) and area under the curve during iontophoresis (AUC) at the anodal and cathodal leads were recorded. Measurements were performed in three sessions for 2 days. The coefficient of variation (CV) was calculated for each parameter. Among the parameters studied, maximum change in perfusion and peak flux were the most reproducible parameters.
    Matched MeSH terms: Skin Absorption
  6. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Skin Absorption
  7. Carran M, Shaw IC
    N Z Med J, 2012;125(1358):52-63.
    PMID: 22864157
    It is well known that the endocrine-disrupting chemical (EDC) dibutylphthalate (DBP) inhibits testosterone synthesis and can lead to feminisation in male laboratory animals. Moreover, it has long been speculated that human exposure would result in the similar effects, but this is difficult to study because specific human exposure cohorts are rare. We report increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In addition, we modelled absorption of DBP from the soldiers' clothing and using published data for skin absorption, and calculated a large theoretical absorbed dose of 64 mg/kg body weight/day which is similar to DBP's lowest observed adverse effect level (LOAEL) of 50 mg/kg body weight/day and thus indicates a biological effect is possible. This is the first report of a multigenerational developmental effect following DBP exposure in human males.
    Matched MeSH terms: Skin Absorption
  8. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Skin Absorption*
  9. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
    Matched MeSH terms: Skin Absorption*
  10. Goh CF, Moffat JG, Craig DQM, Hadgraft J, Lane ME
    Mol Pharm, 2019 01 07;16(1):359-370.
    PMID: 30525649 DOI: 10.1021/acs.molpharmaceut.8b01027
    Drug crystallization on and in the skin has been reported following application of topical or transdermal formulations. This study explored novel probe-based approaches including localized nanothermal analysis (nano-TA) and photothermal microspectroscopy (PTMS) to investigate and locate drug crystals in the stratum corneum (SC) of porcine skin following application of simple ibuprofen (IBU) formulations. We also conducted in vitro skin permeation studies and tape stripping. The detection of drug crystals in the SC on tape strips was confirmed using localized nano-TA, based on the melting temperature of IBU. The melting of IBU was also evident as indicated by a double transition and confirmed the presence of drug crystals in the SC. The single point scans of PTMS on the tape strips allowed collection of the photothermal FTIR spectra of IBU, confirming the existence of drug crystals in the skin. The combined methods also indicated that drug crystallized in the SC at a depth of ∼4-7 μm. Future studies will examine the potential of these techniques to probe crystallization of other commonly used actives in topical and transdermal formulations.
    Matched MeSH terms: Skin Absorption
  11. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: Skin Absorption
  12. Goh CF, Lane ME
    Int J Pharm, 2014 Oct 1;473(1-2):607-16.
    PMID: 25091375 DOI: 10.1016/j.ijpharm.2014.07.052
    Diclofenac (DF) was first synthesized in the 1960's and is currently available as ophthalmic, oral, parenteral, rectal and skin preparations. This review focuses on the administration of DF to the skin. As a member of the non-steroidal anti-inflammatory (NSAID) group of drugs the primary indications of DF are for the management of inflammation and pain but it is also used to treat actinic keratosis. The specific aims of this paper are to: (i) provide an overview of the pharmacokinetics and metabolism of DF following oral and topical administration; (ii) examine critically the various formulation approaches which have been investigated to enhance dermal delivery of DF; and (iii) identify new formulation strategies for enhanced DF skin penetration.
    Matched MeSH terms: Skin Absorption
  13. Goh CF, Hadgraft J, Lane ME
    Int J Pharm, 2022 Feb 25;614:121447.
    PMID: 34998922 DOI: 10.1016/j.ijpharm.2021.121447
    For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.
    Matched MeSH terms: Skin Absorption
  14. Gumel AB, Kubota K, Twizell EH
    Math Biosci, 1998 Aug 15;152(1):87-103.
    PMID: 9727298
    A sequential algorithm is developed for the non-linear dual-sorption model developed by Chandrasekaran et al. [1,2] which monitors pharmacokinetic profiles in percutaneous drug absorption. In the experimental study of percutaneous absorption, it is often observed that the lag-time decreases with the increase in the donor concentration when two or more donor concentrations of the same compound are used. The dual-sorption model has sometimes been employed to explain such experimental results. In this paper, it is shown that another feature observed after vehicle removal may also characterize the dual-sorption model. Soon after vehicle removal, the plots of the drug flux versus time become straight lines on a semilogarithmic scale as in the linear model, but the half-life is prolonged thereafter when the dual-sorption model prevails. The initial half-life after vehicle removal with a low donor concentration is longer than that with a higher donor concentration. These features, if observed in experiments, may be used as evidence to confirm that the dual-sorption model gives an explanation to the non-linear kinetic behaviour of a permeant.
    Matched MeSH terms: Skin Absorption/drug effects*
  15. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Skin Absorption/drug effects; Skin Absorption/physiology*; Skin Absorption/radiation effects
  16. Ho YB, Abdullah NH, Hamsan H, Tan ESS
    Regul Toxicol Pharmacol, 2017 Aug;88:72-76.
    PMID: 28554823 DOI: 10.1016/j.yrtph.2017.05.018
    This study aims to determine concentrations of mercury in facial skin lightening cream according to different price categories (category I: skin lightening creams were determined during a preliminary market survey. Thereafter, twenty samples were purchased from various locations such as cosmetic stalls, beauty shops, pharmacies and street vendors based on their stratified price categories. Samples were extracted using microwave digester and analyzed using cold vapor atomic absorption spectrometry (CV-AAS). Non-carcinogenic chronic health risks for application of facial skin lightening cream were calculated using Dermal Absorption Dose (DAD) and Hazard Quotient (HQ). Concentrations of mercury in samples were less than the United States Food and Drug Administration (USFDA) permitted trace levels (<1 ppm) except for one sample from category III which was manufactured in China. Concentrations of mercury in facial skin lightening creams ranged from not detected to 1.13 mg kg-1. There was no significant association between concentrations of mercury with price categories (p = 0.12). There was no significant non-carcinogenic health risk due to daily application of the facial skin lightening creams based on assumption of 30 years exposure period (HQ 
    Matched MeSH terms: Skin Absorption
  17. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Buang F, Sahudin S
    Int J Pharm, 2013 Feb 28;444(1-2):109-19.
    PMID: 23337632 DOI: 10.1016/j.ijpharm.2013.01.024
    In this study, hydroxytyrosol (HT; a potent antioxidant) was co-administered with hydrocortisone (HC) to mitigate the systemic adverse effects of the latter and to provide additional anti-inflammatory and antioxidant benefits in the treatment of atopic dermatitis (AD). The co-loaded nanoparticles (NPs) prepared had shown different particle sizes, zeta potentials, loading efficiencies, and morphology, when the pH of the chitosan solution was increased from 3.0 to 7.0. Ex vivo permeation data showed that the co-loaded NPs formulation significantly reduced the corresponding flux (17.04μg/cm(2)/h) and permeation coefficient (3.4×10(-3)cm/h) of HC across full-thickness NC/Nga mouse skin. In addition, the NPs formulation showed higher epidermal (1560±31μg/g of skin) and dermal (880±28μg/g of skin) accumulation of HC than did a commercial HC formulation. Moreover, an in vivo study using an NC/Nga mouse model revealed that compared to the other treatment groups, the group treated with the NPs formulation efficiently controlled transepidermal water loss (13±2g/m(2)/h), intensity of erythema (207±12), and dermatitis index (mild). In conclusion, NPs co-loaded with HC/HT is proposed as a promising system for the percutaneous co-delivery of anti-inflammatory and antioxidative agents in the treatment of AD.
    Matched MeSH terms: Skin Absorption
  18. Khan NR, Wong TW
    Expert Opin Drug Deliv, 2016 09;13(9):1209-19.
    PMID: 27212391 DOI: 10.1080/17425247.2016.1193152
    OBJECTIVES: Skin drug retention is required in local treatment of skin cancer. This study investigated the interplay effects of ethosomes and microwave in transdermal drug delivery. Skin pre-treatment by microwave and applied with liquified medicine is deemed to 'cement' the skin thereby raising skin drug deposition.

    METHODS: 5-fluorouracil-loaded ethosomes were prepared and subjected to size, zeta potential, morphology, drug content, drug release and skin permeation tests. The molecular characteristics of untreated, microwave and/or ethosome-treated skins were examined by Fourier transform infrared and raman spectroscopy, thermal and electron microscopy techniques.

    RESULTS: The skin drug retention was promoted using larger ethosomes with negative zeta potentials that repelled anionic lipids of skin and hindered vesicle permeation into deep layers. These ethosomes had low ethanol content. They were less able to fluidize the lipid and defluidize the protein domains at epidermis to enlarge aqueous pores for drug permeation. Pre-treatment of skin by 2450 MHz microwave for 2.5 min further increased skin drug penetration and retention of low ethanol ethosomes and provided lower drug permeation than cases treated for 1.15 min and 5 min. A 2.5 min treatment might be accompanied by specific dermal protein fluidization via C=O moiety which translated to macromolecular swelling, narrowing of intercellular spaces at lower skin layers, increased drug retention and reduced drug permeation.

    CONCLUSION: Ethosomes and microwave synergized to promote skin drug retention.

    Matched MeSH terms: Skin Absorption*
  19. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
    Matched MeSH terms: Skin Absorption/drug effects; Skin Absorption/physiology*
  20. Khan NR, Wong TW
    Artif Cells Nanomed Biotechnol, 2018;46(sup1):568-577.
    PMID: 29378453 DOI: 10.1080/21691401.2018.1431650
    This study focuses on the use of ethosome and microwave technologies to facilitate skin penetration and/or deposition of 5-fluorouracil in vitro and in vivo. Low ethanol ethosomes were designed and processed by mechanical dispersion technique and had their size, zeta potential, morphology, drug content and encapsulation efficiency characterized. The skin was pre-treated with microwave at 2450 MHz for 2.5 min with ethosomes applied topically and subjected to in vitro and in vivo skin drug permeation as well as retention evaluation. The drug and/or ethosomes cytotoxicity, uptake and intracellular trafficking by SKMEL-28 melanoma cell culture were evaluated. Pre-treatment of skin by microwave promoted significant drug deposition in skin from ethosomes in vitro while keeping the level of drug permeation unaffected. Similar observations were obtained in vivo with reduced drug permeation into blood. Combination ethosome and microwave technologies enhanced intracellular localization of ethosomes through fluidization of cell membrane lipidic components as well as facilitating endocytosis by means of clathrin, macropinocytosis and in particularly lipid rafts pathways. The synergistic use of microwave and ethosomes opens a new horizon for skin malignant melanoma treatment.
    Matched MeSH terms: Skin Absorption*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links