Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Abdulelah H, Negash BM, Yekeen N, Al-Hajri S, Padmanabhan E, Al-Yaseri A
    ACS Omega, 2020 Aug 18;5(32):20107-20121.
    PMID: 32832765 DOI: 10.1021/acsomega.0c01738
    The influence of an anionic surfactant, a cationic surfactant, and salinity on adsorbed methane (CH4) in shale was assessed and modeled in a series of systematically designed experiments. Two cases were investigated. In case 1, the crushed Marcellus shale samples were allowed to react with anionic sodium dodecyl sulfate (SDS) and brine. In case 2, another set of crushed Marcellus shale samples were treated with cetyltrimethylammonium bromide (CTAB) and brine. The surfactant concentration and salinity of brine were varied following the Box-Behnken experimental design. CH4 adsorption was then assessed volumetrically in the treated shale at varying pressures (1-50 bar) and a constant temperature of 30 °C using a pressure equilibrium cell. Mathematical analysis of the experimental data yielded two separate models, which expressed the amount of adsorbed CH4 as a function of SDS/CTAB concentration, salinity, and pressure. In case 1, the highest amount of adsorbed CH4 was about 1 mmol/g. Such an amount was achieved at 50 bar, provided that the SDS concentration is kept close to its critical micelle concentration (CMC), which is 0.2 wt %, and salinity is in the range of 0.1-20 ppt. However, in case 2, the maximum amount of adsorbed CH4 was just 0.3 mmol/g. This value was obtained at 50 bar and high salinity (∼75 ppt) when the CTAB concentration was above the CMC (>0.029 wt %). The findings provide researchers with insights that can help in optimizing the ratio of salinity and surfactant concentration used in shale gas fracturing fluid.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  2. Adeyemi, K.D., Mislan, N., Aghwan, Z.A., Sarah, S.A., Sazili, A.Q.
    MyJurnal
    The study examined the protein profile of Pectoralis major muscle in broiler chickens subjected to different freezing and thawing methods. Pectoralis major muscle was excised from the carcasses of twenty broiler chickens and split into left and right halves. The left half was subjected to slow freezing (-20oC) while the right half was rapidly frozen (-80oC). The samples were stored at their respective temperature for 2 weeks and assigned to either of tap water (27oC, 30 min), room temperature (26oC, 60 min), microwave (750W, 10 min) or chiller (4oC, 6 h) thawing. Changes in myofibrillar proteins following the thawing methods were monitored through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic profile indicated differences (p < 0.05) in intensities of the components of myofibrillar proteins among the thawing methods in both slow and rapidly frozen samples. Chiller thawing had significantly higher (p < 0.05) protein concentration than other methods in rapidly frozen samples. However, in slow freezing, there were no significant differences in protein concentration among the thawing methods. In rapidly frozen samples, the protein optical densities at molecular weight of 21, 27, 55 and 151kDa in tap water, chiller and room temperature thawing did not differ (p < 0.05). Similarly, in slowly frozen samples, protein optical densities at molecular weight of 21, 27, 85 and 151 kDa were not significantly different among chill, tap water and room temperature thawing. Microwave thawing consistently caused higher protein degradation resulting in significantly lower (p < 0.05) protein quality and quantity in both freezing methods.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  3. Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N
    J Microbiol Biotechnol, 2024 Feb 28;34(2):436-456.
    PMID: 38044750 DOI: 10.4014/jmb.2306.06050
    Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  4. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  5. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

    Matched MeSH terms: Sodium Dodecyl Sulfate
  6. Azhim A, Syazwani N, Morimoto Y, Furukawa KS, Ushida T
    J Biomater Appl, 2014 Jul;29(1):130-41.
    PMID: 24384523 DOI: 10.1177/0885328213517579
    A novel decellularization method using sonication treatment is described. Sonication treatment is the combination of physical and chemical agents. These methods will disrupt cell membrane and release cell contents to external environments. The cell removal was facilitated by subsequent rinsing of sodium dodecyl sulfate detergents. Sonication treatment is used in the preparation of complete decellularized bioscaffolds. The aim of this study is to confirm the usefulness of sonication treatment for preparation of biological scaffolds. In this study, samples of aortic tissues are decellularized by sonication treatment at frequency of 170 kHz in 0.1% and 2% sodium dodecyl sulfate detergents for 10-h treatment time. The relation between decellularization and sonication parameters such as dissolved oxygen concentration, conductivity, and pH is investigated. Histological analysis and biomechanical testing is performed to evaluate cell removal efficiency as well as changes in biomechanical properties. Minimal inflammation response elicit by bioscaffolds is confirmed by xenogeneic implantation and immunohistochemistry. Sonication treatment is able to produce complete decellularized tissue suggesting that these treatments could be applied widely as one of the decellularization method.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  7. Chellathurai MS, Ling VWT, Palanirajan VK
    Turk J Pharm Sci, 2021 Feb 25;18(1):96-103.
    PMID: 33634684 DOI: 10.4274/tjps.galenos.2020.21033
    Objectives: Microneedle transdermal patches are a combination of hypodermic needles and transdermal patches used to overcome the individual limitations of both injections and patches. The objective of this study was to design a minimally invasive, biodegradable polymeric recombinant human keratinocyte growth factor (rHuKGF) microneedle array and evaluate the prepared biodegradable microneedles using in vitro techniques.

    Materials and Methods: Biodegradable polymeric microneedle arrays were fabricated out of poly lactic-co-glycolic acid (PLGA) using the micromolding technique under aseptic conditions, and the morphology of the microneedles was characterized using light microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to rule out drug-polymer interactions. Standard procedures were used to analyze the prepared microneedle arrays for in vitro drug release and to perform a microneedle insertion test. Enzyme-linked immunosorbent assay was used to quantify rHuKGF.

    Results: The PLGA polymer was safe for use in the fabrication of rHuKGF microneedles as there was no interaction between the drug and the polymer. The fabricated rHuKGF microneedle arrays had fully formed microneedles with a height of 600 µm and a base of 300 µm. The drug from the microneedle patch was released in vitro within 30 minutes. The strength of the microneedles in the patch was good, as they were able to reach a depth of 381±3.56 µm into parafilm without any structural change or fracture.

    Conclusion: Microneedle transdermal patches were successfully prepared for rHuKGF, and their evaluation suggested excellent quality and uniformity of patch characteristics. This can have potential applications in the therapeutic arena, offering advantages in terms of reduced dosing frequency, improved patient compliance, and bioavailability.

    Matched MeSH terms: Sodium Dodecyl Sulfate
  8. Chin SC, Abdullah N, Siang TW, Wan HY
    J Microbiol, 2005 Jun;43(3):251-6.
    PMID: 15995642
    In this study, we assessed the susceptibility of 12 Lactobacillus strains, all of which had been isolated from the gastrointestinal tracts of chicken, to three antibiotics (chloramphenicol, erythromycin and tetracycline) used commonly as selective markers in transformation studies of lactic acid bacteria. Among these strains, 17%, 58%, and 25% were found to exhibit a high degree of resistance to 200 microg/ml of tetracycline, erythromycin, and chloramphenicol, respectively. Seven of the 12 Lactobacillus strains exhibiting resistance to at least 50 microg/ml of chloramphenicol or erythromycin, and five strains exhibiting resistance to at least 50 microg/ml of tetracycline, were subsequently subjected to plasmid curing with chemical curing agents, such as novobiocin, acriflavin, SDS, and ethidium bromide. In no cases did the antibiotic resistance of these strains prove to be curable, with the exception of the erythromycin resistance exhibited by five Lactobacillus strains (L. acidophilus I16 and I26, L. fermentum I24 and C17, and L. brevis C10). Analysis of the plasmid profiles of these five cured derivatives revealed that all of the derivatives, except for L. acidophilus I16, possessed profiles similar to those of wild-type strains. The curing of L. acidophilus I16 was accompanied by the loss of 4.4 kb, 6.1 kb, and 11.5 kb plasmids.
    Matched MeSH terms: Sodium Dodecyl Sulfate/pharmacology
  9. Chong HP, Tan KY, Tan CH
    Front Mol Biosci, 2020;7:583587.
    PMID: 33263003 DOI: 10.3389/fmolb.2020.583587
    Venoms of cobras (Naja spp.) contain high abundances of cytotoxins, which contribute to tissue necrosis in cobra envenomation. The tissue-necrotizing activity of cobra cytotoxins, nevertheless, indicates anticancer potentials. This study set to explore the anticancer properties of the venoms and cytotoxins from Naja sumatrana (equatorial spitting cobra) and Naja kaouthia (monocled cobra), two highly venomous species in Southeast Asia. The cytotoxicity, selectivity, and cell death mechanisms of their venoms and cytotoxins (NS-CTX from N. sumatrana: NS-CTX; N. kaouthia: NK-CTX) were elucidated in human lung (A549), prostate (PC-3), and breast (MCF-7) cancer cell lines. Cytotoxins were purified through a sequential fractionation approach using cation-exchange chromatography, followed by C18 reverse-phase high-performance liquid chromatography (HPLC) to homogeneity validated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (LCMS/MS). The cobra venoms and their respective cytotoxins exhibited concentration-dependent growth inhibitory effects in all cell lines tested, with the cytotoxins being more potent compared to the corresponding whole venoms. NS-CTX and NK-CTX are, respectively, P-type and S-type isoforms of cytotoxin, based on the amino acid sequences as per LCMS/MS analysis. Both cytotoxins exhibited differential cytotoxic effects in the cell lines tested, with NS-CTX (P-type cytotoxin) being significantly more potent in inhibiting the growth of the cancer cells. Both cytotoxins demonstrated promising selectivity only for the A549 lung cancer cell line (selectivity index = 2.17 and 2.26, respectively) but not in prostate (PC-3) and breast (MCF-7) cancer cell lines (selectivity index < 1). Flow cytometry revealed that the A549 lung cancer cells treated with NS-CTX and NK-CTX underwent necrosis predominantly. Meanwhile, the cytotoxins induced mainly caspase-independent late apoptosis in the prostate (PC-3) and breast (MCF-7) cancer cells lines but lacked selectivity. The findings revealed the limitations and challenges that could be faced during the development of new cancer therapy from cobra cytotoxins, notwithstanding their potent anticancer effects. Further studies should aim to overcome these impediments to unleash the anticancer potentials of the cytotoxins.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  10. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, et al.
    J Allergy Clin Immunol, 1993 Nov;92(5):690-7.
    PMID: 8227860
    BACKGROUND: Allergy to latex-containing articles is becoming more and more important because it can result in unexpected life-threatening anaphylactic reactions in sensitized individuals.

    METHODS: A protein of 58 kd with an isoelectric point of 8.45 was purified from raw latex and from latex gloves and identified as the major allergen, completely blocking specific IgE antibodies in the serum of latex-sensitized subjects. The allergen is a noncovalent homotetramer molecule, in which the 14.6 kd monomer was identified, by amino acid composition and sequence homologies of tryptic peptides, to be the rubber elongation factor found in natural latex of the Malaysian rubber tree.

    RESULTS: Competitive immunoinhibition tests showed that the starch powder covering the finished gloves is the airborne carrier of the allergen, resulting in bronchial asthma on inhalation. The purified allergen can induce allergic reactions in the nanogram range.

    CONCLUSION: The identification of the allergen (Hev b I) may help to eliminate it during the production of latex-based articles in the future.

    Matched MeSH terms: Sodium Dodecyl Sulfate
  11. Fan H, Dumont MJ, Simpson BK
    J Food Sci Technol, 2017 Nov;54(12):4000-4008.
    PMID: 29085142 DOI: 10.1007/s13197-017-2864-5
    Gelatin from salmon (Salmo salar) skin with high molecular weight protein chains (α-chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  12. Farade RA, Abdul Wahab NI, Mansour DA, Azis NB, Bt Jasni J, Soudagar MEM, et al.
    Materials (Basel), 2020 Jun 04;13(11).
    PMID: 32512926 DOI: 10.3390/ma13112569
    Sustainable materials, such as vegetable oils, have become an effective alternative for liquid dielectrics in power transformers. However, currently available vegetable oils for transformer application are extracted from edible products with a negative impact on food supply. So, it is proposed in this study to develop cottonseed oil (CSO) as an electrical insulating material and cooling medium in transformers. This development is performed in two stages. The first stage is to treat CSO with tertiary butylhydroquinone (TBHQ) antioxidants in order to enhance its oxidation stability. The second and most important stage is to use the promising graphene oxide (GO) nanosheets to enhance the dielectric and thermal properties of such oil through synthesizing GO-based CSO nanofluids. Sodium dodecyl sulfate (SDS) surfactant was used as surfactant for GO nanosheets. The nanofluid synthesis process followed the two-step method. Proper characterization of GO nanosheets and prepared nanofluids was performed using various techniques to validate the structure of GO nanosheets and their stability into the prepared nanofluids. The considered weight percentages of GO nanosheets into CSO are 0.01, 0.02, 0.03 and 0.05. Dielectric and thermal properties were comprehensively evaluated. Through these evaluations, the proper weight percentage of GO nanosheets was adopted and the corresponding physical mechanisms were discussed.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  13. Gaaz TS, Kadhum AAH, Michael PKA, Al-Amiery AA, Sulong AB, Nassir MH, et al.
    Polymers (Basel), 2017 Jun 06;9(6).
    PMID: 30970887 DOI: 10.3390/polym9060207
    A halloysite nanotubes⁻polyvinyl alcohol⁻polyvinylpyrrolidone (HNTs⁻PVA⁻PVP) composite has been investigated for a quite long time aiming at improving the physico⁻chemical characterization of HNTs. In this work, HNTs⁻PVA⁻PVP composite were prepared based on a unique procedure characterized by crosslinking two polymers with HNTs. The composite of two polymers were modified by treating HNTs with phosphoric acid (H₃PO₄) and by using malonic acid (MA) as a crosslinker. The composite was also treated by adding the dispersion agent sodium dodecyl sulfate (SDS). The HNTs⁻PVA⁻PVP composite shows better characteristics regarding agglomeration when HNTs is treated in advance by H₃PO₄. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), brunauer⁻emmett⁻teller (BET), size distribution, and atomic force microscopy (AFM) are used to characterize the physio-chemical properties of the composite. FTIR shows additional peaks at 2924.29, 1455.7, and 682.4 cm-1 compared to the neat HNTs due to adding MA. Despite that, the XRD spectra do not show a significant difference, the decrease in peak intensity could be attributed to the addition of semi-crystalline PVA and the amorphous PVP. The images taken by TEM and FESEM show the possible effects of MA on the morphology and internal feature of HNTs⁻PVA⁻PVP composite treated by MA by showing the deformation of the matrix. The BET surface area increased to 121.1 m²/g compared to the neat HNTs at 59.1 m²/g. This result, the second highest recorded result, is considered a breakthrough in enhancing the properties of HNTs⁻PVA⁻PVP composite, and treatment by MA crosslinking may attribute to the size and the number of the pores. The results from these techniques clearly showed that a significant change has occurred for treated HNTs⁻PVA⁻PVP composite where MA was added. The characterization of HNTs⁻PVA⁻PVP composite with and without treating HNTs and using crosslinker may lead to a better understanding of this new composites as a precursor to possible applications in the dentistry field.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  14. Ghalib, H., Abdullah, I., Daik, R.
    MyJurnal
    Conducting polypyrrole (PPy) nanoparticles were synthesized by chemical oxidative polymerization of pyrrole in aqueous solution containing ferric sulfate (Fe2(SO4)3), anionic surfactants (sodium dodecylbenzene-sulfonate (NaDBS) or sodium dodecyl sulfate (SDS)), 1-pentanol as the oxidant, dopant and co-emulsifier, respectively. The polymerization was carried out at 0 ºC and 25 ºC. Fourier transform infrared spectroscopy (FTIR) and elemental analysis indicated that anionic surfactants were successfully incorporated into the PPy backbone. Incorporation of anionic surfactants caused enhanced electrical conductivity, increased yield, decreased the size of particles as well as improved the thermal stability of the resultant PPy. The presence of anionic surfactant seems to inhibit undesirable side reactions so as to improve the regularity of the PPy backbone. Globular PPy particles were obtained with diameter ranged from 40 to 118 nm as revealed by field emission scanning electron microscopy (FE-SEM) and conductivity of 7.89×10-4 –2.35×10-2 S cm-1, as measured using impedance analyzer. It was found that polymerization at low temperature (0 ºC) produced PPy particles with smaller size and higher conductivity. The sodium dodecyl sulfate-doped PPy (SDS-doped PPy) exhibited higher conductivity than that of the sodium dodecylbenzenesulfonate-doped PPy (NaDBS-doped PPy), due to the bulkiness of NaDBS as compared to SDS.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  15. Grindstaff KK, Fielding LA, Brodl MR
    Plant Physiol, 1996 Feb;110(2):571-581.
    PMID: 12226205
    The heat-shock responses of barley (Hordeum vulgare L. cv Hi- malaya) aleurone layers incubated with or without gibberellic acid (GA3) were compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat shock blocked the synthesis and secretion of secretory proteins from GA3-treated layers but not untreated layers. This suppression of secretory protein synthesis has been correlated with changes in endoplasmic reticulum (ER) membranes (F.C. Belanger, M. R. Brodl, T.-h.D. Ho [1986] Proc Natl Acad Sci USA 83: 1354-1358; L. Sticher, A.K. Biswas, D.S. Bush, R.L. Jones [1990] Plant Physiol 92: 506-513). Our secretion data suggested that the ER membranes of aleurone layers incubated without GA3 may be more heat shock tolerant. To investigate this, the lipid profiles of membrane extracts in aleurone layers labeled with [14C]glycerol were examined. Heat shock markedly increased [14C]glycerol incorporation into phosphatidylcholine (PC), and gas chromatography revealed an increase in the amount of saturated fatty acids associated with thin layer chromatography-purified PC in GA3-treated layers. In contrast, aleurone layers incubated without GA3 at normal temperature contained PC-associated fatty acids with a greater degree of saturation than GA3-treated layers. Heat shock modestly increased the degree of fatty acid saturation in untreated aleurone layers. This same trend was noted in fatty acids isolated from ER membranes purified by continuous sucrose density centrifugation. We propose that increased fatty acid saturation may help sustain ER membrane function in heat-shocked aleurone layers incubated in the absence of GA3.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  16. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  17. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Sodium Dodecyl Sulfate/metabolism*
  18. Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al.
    Biomed Res Int, 2013;2013:384541.
    PMID: 24383052 DOI: 10.1155/2013/384541
    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
    Matched MeSH terms: Sodium Dodecyl Sulfate/metabolism*
  19. Hosseini S, Lao-Atiman W, Han SJ, Arpornwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Oct 08;8(1):14909.
    PMID: 30297883 DOI: 10.1038/s41598-018-32806-3
    Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0-8 mM SDS/7 M KOH, pristine zinc granules in 0-1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
    Matched MeSH terms: Sodium Dodecyl Sulfate
  20. Huq, N.L., DeAngelis, A., Rahim, Z.H.A., Ung, M., Lucas, J., Cross, K.J., et al.
    Ann Dent, 2004;11(1):-.
    MyJurnal
    The aim was to examine the protein profiles of whole and parotid saliva using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and MALDI-TOF mass spectrometry. The banding patterns of proteins exhibited by the unstimulated whole saliva samples on the gel remained quite constant but the intensity of the protein bands were slightly different from one sample to another. Comparison of the protein profiles of unstimulated whole saliva and stimulated parotid saliva showed almost similar banding pattern. The exception is the presence of a pink protein band in the 65-67 kD region in the stimulated parotid saliva samples which was also observed in the unstimulated whole saliva sample contributed by a cerebral palsy patient. Analysis of the saliva samples using MALDI-TOF mass spectrometry also revealed that the stimulated parotid saliva samples exhibited some peaks that were in the same region as those for the unstimulated whole saliva sample of the cerebral palsy subject. This may imply that there is ineffective control of the parotid secretion in cerebral palsy subject under unstimulated condition. The SDS-PAGE and MALDI-TOF analyses may provide more information on the profiles of the salivary proteins which could be beneficial in the diagnosis of salivary gland dysfunction.
    Matched MeSH terms: Sodium Dodecyl Sulfate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links