Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Dieng H, The CC, Satho T, Miake F, Wydiamala E, Kassim NFA, et al.
    Acta Trop, 2019 Jun;194:93-99.
    PMID: 30922800 DOI: 10.1016/j.actatropica.2019.03.027
    Sound and its reception are crucial for reproduction, survival, and population maintenance of many animals. In insects, low-frequency vibrations facilitate sexual interactions, whereas noise disrupts the perception of signals from conspecifics and hosts. Despite evidence that mosquitoes respond to sound frequencies beyond fundamental ranges, including songs, and that males and females need to struggle to harmonize their flight tones, the behavioral impacts of music as control targets remain unexplored. In this study, we examined the effects of electronic music (Scary Monsters and Nice Sprites by Skrillex) on foraging, host attack, and sexual activities of the dengue vector Aedes aegypti. Adults were presented with two sound environments (music-off or music-on). Discrepancies in visitation, blood feeding, and copulation patterns were compared between environments with and without music. Ae. aegypti females maintained in the music-off environment initiated host visits earlier than those in the music-on environment. They visited the host significantly less often in the music-on than the music-off condition. Females exposed to music attacked hosts much later than their non-exposed peers. The occurrence of blood feeding activity was lower when music was being played. Adults exposed to music copulated far less often than their counterparts kept in an environment where there was no music. In addition to providing insight into the auditory sensitivity of Ae. aegypti to sound, our results indicated the vulnerability of its key vectorial capacity traits to electronic music. The observation that such music can delay host attack, reduce blood feeding, and disrupt mating provides new avenues for the development of music-based personal protective and control measures against Aedes-borne diseases.
    Matched MeSH terms: Sound
  2. Röper KM, Scheumann M, Wiechert AB, Nathan S, Goossens B, Owren MJ, et al.
    Am J Primatol, 2014 Feb;76(2):192-201.
    PMID: 24123122 DOI: 10.1002/ajp.22221
    The endangered proboscis monkey (Nasalis larvatus) is a sexually highly dimorphic Old World primate endemic to the island of Borneo. Previous studies focused mainly on its ecology and behavior, but knowledge of its vocalizations is limited. The present study provides quantified information on vocal rate and on the vocal acoustics of the prominent calls of this species. We audio-recorded vocal behavior of 10 groups over two 4-month periods at the Lower Kinabatangan Wildlife Sanctuary in Sabah, Borneo. We observed monkeys and recorded calls in evening and morning sessions at sleeping trees along riverbanks. We found no differences in the vocal rate between evening and morning observation sessions. Based on multiparametric analysis, we identified acoustic features of the four common call-types "shrieks," "honks," "roars," and "brays." "Chorus" events were also noted in which multiple callers produced a mix of vocalizations. The four call-types were distinguishable based on a combination of fundamental frequency variation, call duration, and degree of voicing. Three of the call-types can be considered as "loud calls" and are therefore deemed promising candidates for non-invasive, vocalization-based monitoring of proboscis monkeys for conservation purposes.
    Matched MeSH terms: Sound Spectrography
  3. Wong KS, Lee L, Hung YM, Yeo LY, Tan MK
    Anal Chem, 2019 10 01;91(19):12358-12368.
    PMID: 31500406 DOI: 10.1021/acs.analchem.9b02850
    Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed. Nevertheless, it was shown that only bulk vibration in the form of Lamb waves can be excited in the superstrate, which is considerably less efficient and flexible in terms of microfluidic functionality compared to its surface counterpart, that is, the SAW. Here, we reveal an extremely simple way that quite unexpectedly and rather nonintuitively allows SAWs to be generated on the superstrate-by coating the superstrate with a thin gold layer. In addition to verifying the existence of the SAW on the coated superstrate, we carry out finite-difference time domain numerical simulations that not only confirm the experimental observations but also facilitate an understanding of the surprising difference that the coating makes. Finally, we elucidate the various power-dependent particle concentration phenomena that can be carried out in a sessile droplet atop the superstrate and show the possibility for simply carrying out rapid and effective microcentrifugation-a process that is considerably more difficult with Lamb wave excitation on the superstrate.
    Matched MeSH terms: Sound
  4. Zabidi A, Lee YK, Mansor W, Yassin IM, Sahak R
    PMID: 21096346 DOI: 10.1109/IEMBS.2010.5626712
    This paper presents a new application of the Particle Swarm Optimization (PSO) algorithm to optimize Mel Frequency Cepstrum Coefficients (MFCC) parameters, in order to extract an optimal feature set for diagnosis of hypothyroidism in infants using Multi-Layer Perceptrons (MLP) neural network. MFCC features is influenced by the number of filter banks (f(b)) and the number of coefficients (n(c)) used. These parameters are critical in representation of the features as they affect the resolution and dimensionality of the features. In this paper, the PSO algorithm was used to optimize the values of f(b) and n(c). The MFCC features based on the PSO optimization were extracted from healthy and unhealthy infant cry signals and used to train MLP in the classification of hypothyroid infant cries. The results indicate that the PSO algorithm could determine the optimum combination of f(b) and n(c) that produce the best classification accuracy of the MLP.
    Matched MeSH terms: Sound Spectrography/methods*
  5. Pua CH, Ahmad H, Harun SW, De La Rue RM
    Appl Opt, 2012 May 20;51(15):2772-7.
    PMID: 22614578 DOI: 10.1364/AO.51.002772
    The idea of applying a simple Fabry-Perot fiber laser (FPFL) set-up in a free-running condition as an acoustic sensing medium is proposed. Conventional optical microphone requires a stringently aligned diaphragm to mediate the acoustic impedance mismatch between air and silica fiber. Motivated by the difficulty of optical sensing of airborne acoustic waves, a new sensing method is proposed to sense acoustic waves without the assistance of a diaphragm as transducer. By studying the output power fluctuation of the FPFL, the operating bandwidth and sensitivity of the proposed sensing method are determined. The tunability of the resonant frequency from 5 kHz to 85 kHz allows sensing of acoustic waves in the range of 100 Hz to 100 kHz. Tuning of the resonant frequency can be performed by changing the optical pumping power from as low as 10 mW to 68.5 mW or higher.
    Matched MeSH terms: Sound
  6. Barber JR, Kawahara AY
    Biol Lett, 2013 Aug 23;9(4):20130161.
    PMID: 23825084 DOI: 10.1098/rsbl.2013.0161
    Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths' ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences.
    Matched MeSH terms: Sound
  7. Mohd Razip Wee MF, Jaafar MM, Faiz MS, Dee CF, Yeop Majlis B
    Biosensors (Basel), 2018 Dec 05;8(4).
    PMID: 30563159 DOI: 10.3390/bios8040124
    Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application. In this article, we conducted a theoretical study concerning surface mode propagation, especially Rayleigh and Sezawa mode in the layered GaN/sapphire structure with the presence of various guiding layers. It is demonstrated that the increase in thickness of guiding layer will decrease the phase velocities of surface mode depending on the material properties of the layer. In addition, the Q-factor value indicating the resonance properties of surface mode appeared to be affected with the presence of fluid domain, particularly in the Rayleigh mode. Meanwhile, the peak for Sezawa mode shows the highest Q factor and is not altered by the presence of fluid. Based on these theoretical results using the finite element method, it could contribute to the development of a GaN-based device to generate surface acoustic wave, especially in Sezawa mode which could be useful in acoustophoresis, lab on-chip and microfluidics applications.
    Matched MeSH terms: Sound
  8. Hafizh M, Soliman MM, Qiblawey Y, Chowdhury MEH, Islam MT, Musharavati F, et al.
    Biosensors (Basel), 2023 Jan 02;13(1).
    PMID: 36671914 DOI: 10.3390/bios13010079
    In this paper, a surface acoustic wave (SAW) sensor for hip implant geometry was proposed for the application of total hip replacement. A two-port SAW device was numerically investigated for implementation with an operating frequency of 872 MHz that can be used in more common radio frequency interrogator units. A finite element analysis of the device was developed for a lithium niobate (LiNBO3) substrate with a Rayleigh velocity of 3488 m/s on COMSOL Multiphysics. The Multiphysics loading and frequency results highlighted a good uniformity with numerical results. Afterwards, a hip implant geometry was developed. The SAW sensor was mounted at two locations on the implant corresponding to two regions along the shaft of the femur bone. Three discrete conditions were studied for the feasibility of the implant with upper- and lower-body loading. The loading simulations highlighted that the stresses experienced do not exceed the yield strengths. The voltage output results indicated that the SAW sensor can be implanted in the hip implant for hip implant-loosening detection applications.
    Matched MeSH terms: Sound
  9. Ten ST, Hashim U, Gopinath SC, Liu WW, Foo KL, Sam ST, et al.
    Biosens Bioelectron, 2017 Jul 15;93:146-154.
    PMID: 27660016 DOI: 10.1016/j.bios.2016.09.035
    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.
    Matched MeSH terms: Sound
  10. Chin KY, Soelaiman IN, Mohamed IN, Ngah WZ
    Clinics (Sao Paulo), 2012 Aug;67(8):911-6.
    PMID: 22948459
    OBJECTIVES: Variations in sex hormones and the calcium balance can influence bone health in men. The present study aimed to examine the relationship between the calcaneal speed of sound and biochemical determinants of bone mass, such as sex hormones, parathyroid hormones and serum calcium.

    METHODS: Data from 549 subjects from the Malaysian Aging Male Study, which included Malay and Chinese men aged 20 years and older residing in the Klang Valley, were used for analysis. The subjects' calcaneal speed of sound was measured, and their blood was collected for biochemical analysis. Two sets of multiple regression models were generated for the total/bioavailable testosterone and estradiol to avoid multicollinearity.

    RESULTS: The multiple regression results revealed that bioavailable testosterone and serum total calcium were significant predictors of the calcaneal speed of sound in the adjusted model. After adjustment for ethnicity and body mass index, only bioavailable testosterone remained significant; the total serum calcium was marginally insignificant. In a separate model, the total testosterone and sex hormone-binding globulin were significant predictors, whereas the total serum calcium was marginally insignificant. After adjustment for ethnicity and body mass index (BMI), the significance persisted for total testosterone and SHBG. After further adjustment for age, none of the serum biochemical determinants was a significant predictor of the calcaneal speed of sound.

    CONCLUSION: There is a significant age-dependent relationship between the calcaneal speed of sound and total testosterone, bioavailable testosterone and sex hormone-binding globulin in Chinese and Malay men in Malaysia. The relationship between total serum calcium and calcaneal speed of sound is ethnicity-dependent.

    Matched MeSH terms: Sound*
  11. Umar H, Mast FW, Cacchione T, Martarelli CS
    Cogn Process, 2021 May;22(2):227-237.
    PMID: 33404898 DOI: 10.1007/s10339-020-01010-5
    While previous research has shown that during mental imagery participants look back to areas visited during encoding it is unclear what happens when information presented during encoding is incongruent. To investigate this research question, we presented 30 participants with incongruent audio-visual associations (e.g. the image of a car paired with the sound of a cat) and later asked them to create a congruent mental representation based on the auditory cue (e.g. to create a mental representation of a cat while hearing the sound of a cat). The results revealed that participants spent more time in the areas where they previously saw the object and that incongruent audio-visual information during encoding did not appear to interfere with the generation and maintenance of mental images. This finding suggests that eye movements can be flexibly employed during mental imagery depending on the demands of the task.
    Matched MeSH terms: Sound
  12. Kasihmuddin SM, Cob ZC, Noor NM, Das SK
    Fish Physiol Biochem, 2024 Apr;50(2):413-434.
    PMID: 38367084 DOI: 10.1007/s10695-024-01323-8
    Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.
    Matched MeSH terms: Sound
  13. Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ
    Front Neurosci, 2018;12:866.
    PMID: 30538616 DOI: 10.3389/fnins.2018.00866
    Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
    Matched MeSH terms: Sound
  14. Choudhry FR, Al-Worafi YM, Akram B, Ahmed MA, Anwar Ul Haq M, Khan TM, et al.
    Front Psychol, 2018;9:1513.
    PMID: 30283370 DOI: 10.3389/fpsyg.2018.01513
    Background: A great deal of research has been carried out on the assessment of the eudaimonic perspective of psychological well-being and the hedonic perspective of subjective well-being. The Flourishing Scale (FS) has been extensively used in research and practice, as it assesses the fundamental aspects of social psychological functioning. Nevertheless, the psychometric properties of Urdu versions of eudaimonic measures, such as the FS, have not yet been ascertained. The translation and validation of the FS in the Urdu language was not available, and hence this study was planned with the aim to validate the Urdu version of the FS. Methods: We assessed the psychometric properties of the FS in a sample of adults aged 18 years and above in Pakistan (N = 130) using exploratory factor analysis based on principal component analysis with varimax rotation and confirmatory factor analysis. Results: The exploratory factor analysis confirmed the unidimensional nature of the 8-item FS. We assessed that the Urdu version of the FS showed a high internal consistency reliability (α = 0.914) with a significant intraclass correlation coefficient (ICC), p < 0.001). In our study, the Kaiser-Mayer-Olkin value was 0.915 with a chi-square test value (χ2) of 637.687, and Bartlett's test of sphericity was significant (df = 28, p < 0.001). The intraclass correlation coefficients (ICCs) at test-retest for all domains were statistically significant (p < 0.001) and showed excellent agreement for all the items. The revised confirmatory factor analysis revealed a good-fit model, but with item 8-"People respect me"-removed due to its lower factor loading. Conclusions: The findings suggest that the FS is a psychometrically sound instrument for assessing social psychological functioning among adults in Pakistan. Therefore, the validated Urdu version of the FS may be used in future studies of well-being in clinical psychology and positive psychology.
    Matched MeSH terms: Sound
  15. Das A, Barua A, Mohimin MA, Abedin J, Khandaker MU, Al-Mugren KS
    Healthcare (Basel), 2021 Apr 10;9(4).
    PMID: 33920290 DOI: 10.3390/healthcare9040445
    BACKGROUND: The use of a touchless automated hand sanitizer dispenser may play a key role to reduce contagious diseases. The key problem of the conventional ultrasonic and infra-red-based dispensers is their malfunctioning due to the interference of sunlight, vehicle sound, etc. when deployed in busy public places. To overcome such limitations, this study introduced a laser-based sensing device to dispense sanitizer in an automated touchless process.

    METHOD: The dispensing system is based on an Arduino circuit breadboard where an ATmega328p microcontroller was pre-installed. To sense the proximity, a light-dependent resistor (LDR) is used where the laser light is to be blocked after the placement of human hands, hence produced a sharp decrease in the LDR sensor value. Once the LDR sensor value exceeds the lower threshold, the pump is actuated by the microcontroller, and the sanitizer dispenses through the nozzle.

    RESULTS AND DISCUSSION: A novel design and subsequent fabrication of a low-cost, touchless, automated sanitizer dispenser to be used in public places, was demonstrated. The overall performance of the manufactured device was analyzed based on the cost and power consumption, and environmental factors by deploying it in busy public places as well as in indoor environment in major cities in Bangladesh, and found to be more efficient and cost-effective compared to other dispensers available in the market. A comprehensive discussion on this unique design compared to the conventional ultrasonic and infra-red based dispensers, is presented to show its suitability over the commercial ones. The guidelines of the World Health Organization are followed for the preparation of sanitizer liquid. A clear demonstration of the circuitry connections is presented herein, which facilitates the interested individual to manufacture a cost-effective dispenser device in a relatively short time and use it accordingly. Conclusion: This study reveals that the LDR-based automated hand sanitizer dispenser system is a novel concept, and it is cost-effective compared to the conventional ones. The presented device is expected to play a key role in contactless hand disinfection in public places, and reduce the spread of infectious diseases in society.

    Matched MeSH terms: Sound
  16. Abdelatti ZAS, Hartbauer M
    Hear Res, 2017 11;355:70-80.
    PMID: 28974384 DOI: 10.1016/j.heares.2017.09.011
    In forest clearings of the Malaysian rainforest, chirping and trilling Mecopoda species often live in sympatry. We investigated whether a phenomenon known as stochastic resonance (SR) improved the ability of individuals to detect a low-frequent signal component typical of chirps when members of the heterospecific trilling species were simultaneously active. This phenomenon may explain the fact that the chirping species upholds entrainment to the conspecific song in the presence of the trill. Therefore, we evaluated the response probability of an ascending auditory neuron (TN-1) in individuals of the chirping Mecopoda species to triple-pulsed 2, 8 and 20 kHz signals that were broadcast 1 dB below the hearing threshold while increasing the intensity of either white noise or a typical triller song. Our results demonstrate the existence of SR over a rather broad range of signal-to-noise ratios (SNRs) of input signals when periodic 2 kHz and 20 kHz signals were presented at the same time as white noise. Using the chirp-specific 2 kHz signal as a stimulus, the maximum TN-1 response probability frequently exceeded the 50% threshold if the trill was broadcast simultaneously. Playback of an 8 kHz signal, a common frequency band component of the trill, yielded a similar result. Nevertheless, using the trill as a masker, the signal-related TN-1 spiking probability was rather variable. The variability on an individual level resulted from correlations between the phase relationship of the signal and syllables of the trill. For the first time, these results demonstrate the existence of SR in acoustically-communicating insects and suggest that the calling song of heterospecifics may facilitate the detection of a subthreshold signal component in certain situations. The results of the simulation of sound propagation in a computer model suggest a wide range of sender-receiver distances in which the triller can help to improve the detection of subthreshold signals in the chirping species.
    Matched MeSH terms: Sound Spectrography
  17. Ibrahim IA, Ting HN, Moghavvemi M
    Int J Health Sci (Qassim), 2018 9 12;12(5):25-34.
    PMID: 30202405
    Objectives: The hearing process in the brain is very complicated and hard to solve. However, an understanding of the hearing process is an essential issue and needed in many rehabilitation or treatment applications. This study investigates and compares the effects of simple and complex sounds on latency and amplitude of various event-related potential (ERP) components to male ethnic Malay adults. Comparisons were made with previous studies.

    Materials and Methods: Simple and complex sounds were used (pure tones and the naturally produced Malay consonant-vowels [CVs]) to evoke the cortical auditory-evoked potential (CAEP) signals. Moreover, this study analyzed the influence of related CAEP components that are distinct to the selected population and determined which of the ERP components among (CAEP) components is most affected by the two distinct stimuli. Moreover, the study used classification algorithms to discover the ability of the brain in distinguishing CAEP evoked by stimuli contrasts.

    Results: The results showed some resemblance between our results and ERP waveforms outlined in previous studies conducted on native speakers of English. On the other hand, it was also observed that the P1 and N2 had a significant effect in amplitude due to different stimulus.

    Conclusion: The results show high classification accuracy for the brain to distinguish auditory stimuli. Moreover, the results indicated some resemblance to previous studies conducted on native English speakers using similar tones and English CV stimuli. However, the amplitudes and latencies of the P1 were found to have a significant difference due to stimuli complexity.

    Matched MeSH terms: Sound
  18. Saud, Safaa Najah, Manivannan, Dasarataan, Adzliza Binti Salmi, Lilysuriazna Raya
    MyJurnal
    Nowadays, the scientific knowledge is developing frequently in numerous characteristics to be able to offer versatile and also safe and sound tendency for the users. At this time many of prevalent together with employed indicate by the visually impaired people are using the ivory stick, nonetheless it possesses constraints. With the recent technological innovation, it is easy to prolong the assistance acquire for people who have visual disability throughout their movability; this design endorses a cost-effective ultrasonic stick for visually encountered people today, to be able to achieve an exclusive self-reliance and even exempt from the additional assist. A portable convenient to use technology is designed which could recognize the obstructions in the way working with ultrasonic sensors in addition to vibrator. Ultrasonic sensors will be able to inspect three types of distinct heights. Vibrator is frequently used as a substitute gadget in the areas that surrounds with the minimal signal coverage also nosy environment. The buzzer and vibration motor are initialized while any kind of hindrance is identified. Global positioning system device presents the details about to the proceeding approach both work or even home, that has been supplied considering that control keys together with a contingency switch. Text message unit is utilized by the blind to send out SMS info to the saved phone numbers in the Arduino in the event of unexpected emergency.

    Matched MeSH terms: Sound
  19. Zakaria, Z., Fazalul Rahiman, M.H., Abdul Rahim, R., Megat Ali, M.S.A., Baharuddin, M.Y., Jahidin, A.H.
    MyJurnal
    Ultrasound technology progressed through the 1960’s from simple A-mode and B-mode scans to today’s M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970’s. This research initially focused on how to retrieve a cross sectional images from living or non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/gas flow system.. An alternative system such as a process tomography system, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/gas flow in pipe/vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases.
    Matched MeSH terms: Sound
  20. Ahmad Syazrin Muhamad
    MyJurnal
    Sound is one of the source of energy generated by vibration and is carried through the air in a form of pressure waves (Frederick, 1975). This pressure waves consist of pulsation or vibration of molecules of an elastic medium such as gas, liquid and even solid (Gerber, 1974). Due to its nature, sound can be irritating when it is excessive. The excessive amount of sound is called noise. Exposure to noise is common to the workers working at the industry. This can lead to hearing loss. Hearing loss is one of the most common health problems in the industrialized world. Working activities have been related to noise exposure due to increase use of machine that generates sounds. Many workers throughout the world experience hazardous noise exposure which is ≥ 85 decibels (dB) (Seter, 1998). Based on the previous study in the European region, most of the employers had difficulties to compensate workers diagnosed with hearing loss or hearing impairment cause by the working nature. (Rachiotis et al., 2006). According to European Survey on Working Conditions, about 7% of the workers considered that their work affects their health in the form of hearing disorders. Occupational risk factors for hearing loss include occupational noise, whole body vibration, work-related diseases and exposure to chemical. In this report, we specified in the noise exposure level of the workers.
    Matched MeSH terms: Sound
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links