Displaying publications 1 - 20 of 623 in total

Abstract:
Sort:
  1. Valle DLJ, Puzon JJM, Cabrera EC, Cena-Navarro RB, Rivera WL
    Trop Biomed, 2021 Jun 01;38(2):134-142.
    PMID: 34172702 DOI: 10.47665/tb.38.2.049
    This study aimed to determine the in vivo effectiveness of the ethanolic extract of Piper betle L. leaves against Staphylococcus aureus-infected wounds in mice and its antimicrobial properties on clinical isolates of multiple drug-resistant bacterial pathogens. Twenty mice were divided into four groups. Wounds were created in all mice under anesthesia by excision from the dorsal skin down to the subcutaneous fat and inoculating with S. aureus. After 24 h, the wound of each mouse was treated once daily by application of the respective cream. Group I was treated with mupirocin antibacterial cream; Group II received a cream base containing no active ingredient; Groups III and IV were treated with 2.5% and 5.0% concentrations of P. betle cream, respectively. Further, an in vitro study was performed by adding undiluted, 1:50 and 1:100 dilutions of the four studied creams in normal saline containing 1.5 × 108 CFU/mL of the following bacteria: antimicrobial-susceptible S. aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, extended-spectrum β-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus, metallo-βlactamase-producing P. aeruginosa and carbapenem-resistant Klebsiella pneumoniae. The mice in Groups III and IV had significantly faster wound contraction and significantly shorter reepithelialization time than Group II (p < 0.05), which were not significantly different from Group I (p > 0.05). P. betle creams inhibited all studied bacterial strains at full concentration and at a dilution of 1:50. The inhibitory effect was more significant than Groups I and II (p < 0.05), except on S. aureus. Specifically, S. aureus inhibition was not significantly different for Groups III and IV (p > 0.05) when compared with Group I. Cream formulations derived from P. betle ethanolic extract have great potential as antimicrobial agents for the treatment of wound infection. Further clinical tests are recommended to determine the safety and efficacy of these formulations in other mammalian species.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus/drug effects
  2. Shamsi S, Abdul Ghafor AAH, Norjoshukrudin NH, Ng IMJ, Abdullah SNS, Sarchio SNE, et al.
    Int J Nanomedicine, 2022;17:5781-5807.
    PMID: 36474524 DOI: 10.2147/IJN.S369373
    BACKGROUND: The impetuous usage of antibiotics has led to the perpetual rise of methicillin-resistant Staphylococcus aureus (MRSA), which has garnered the interest of potential drug alternatives, including nanomaterials.

    PURPOSE: The present study investigates the stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (GAGO) on several MRSA strains.

    METHODS: The stability of a synthesized and characterized GAGO was monitored in different physiological media. The toxicity profile of GAGO was evaluated in 3T3 murine fibroblast cells and the embryonic zebrafish model. The antibacterial activity of GAGO against MRSA, methicillin-susceptible S. aureus (MSSA), and community-acquired MRSA; with or without Panton-valentine leucocidin gene (MRSA-pvl+ and MRSA-pvl-) was investigated through disk diffusion, CFU counting method, time-kill experiment, and high-resolution transmission electron microscopy (HRTEM) observation.

    RESULTS: A stable GAGO nanocomposite has shown an improved toxicity profile in 3T3 murine fibroblast cells and zebrafish embryos, besides exhibiting normal ROS levels than graphene oxide (GO) and GA (gallic acid). The nanocomposite inhibited the growth of all bacterial strains employed. The effectiveness of the GAGO nanocomposite was comparable to cefoxitin (CFX), at ≥150 µg/mL in MRSA and MSSA. GAGO exhibited a significantly delayed response towards MRSA-pvl+ and MRSA-pvl-, with increased inhibition following 8 to 24 h of exposure, while comparable activity to native GA was only achieved at 24 h. Meanwhile, for MRSA and MSSA, GAGO had a comparable activity with native GA and GO as early as 2 h of exposure. HRTEM observation further reveals that GAGO-exposed cells were membrane compromised.

    CONCLUSION: In summary, the present study indicates the antibacterial potential of GAGO against MRSA strains, but further study is warranted to understand the mechanism of action of GAGO and its resistance in MRSA strains.

    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  3. Santhana Raj L, Hing HL, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha CP, et al.
    Trop Biomed, 2007 Jun;24(1):105-9.
    PMID: 17568383 MyJurnal
    Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.
    Matched MeSH terms: Staphylococcus aureus/classification; Staphylococcus aureus/drug effects*; Staphylococcus aureus/ultrastructure*
  4. Yunus J, Wan Dagang WRZ, Jamaluddin H, Jemon K, Mohamad SE, Jonet MA
    Arch Microbiol, 2024 Mar 04;206(4):138.
    PMID: 38436775 DOI: 10.1007/s00203-024-03857-0
    In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.
    Matched MeSH terms: Staphylococcus aureus
  5. Chung PY
    Pathog Dis, 2023 Jan 17;81.
    PMID: 37422444 DOI: 10.1093/femspd/ftad016
    Staphylococcus aureus is the leading cause of hospital-acquired infections and can cause a wide range of diseases from mild skin infections to invasive diseases including deep surgical site infections, life-threatening bacteremia, and sepsis. This pathogen remains a challenge to manage due to its ability to rapidly develop resistance to antibiotic treatment and to form biofilms. Despite the current infection control measures which involve mainly antibiotics, the burden of infection remains high. The 'omics' approaches have not led to the discovery of novel antibacterials at a pace sufficient to cope with the emergence of multidrug-resistant and biofilm-forming S. aureus, Hence, new strategies for anti-infective therapies need to be explored urgently. One promising strategy is harnessing the immune response to enhance the protective antimicrobial immunity in the host. This review discusses the potential of monoclonal antibodies and vaccines as alternatives to treat and manage infections caused by planktonic and biofilms of S. aureus.
    Matched MeSH terms: Staphylococcus aureus/physiology; Methicillin-Resistant Staphylococcus aureus*
  6. Zurina Z, Wong HL, Jasminder K, Neoh SH, Cheah IG
    Med J Malaysia, 2012 Dec;67(6):631-2.
    PMID: 23770964 MyJurnal
    Parotid abscess is uncommon in neonates. It is frequently related to prematurity, prolonged gavage feeding and dehydration. We report a case of a late preterm infant who developed the classical manifestation of unilateral acute Staphylococcus aureus suppurative parotitis progressing to formation of abscess which responded to surgical drainage and antibiotic therapy.
    Matched MeSH terms: Staphylococcus aureus*
  7. Zajmi A, Mohd Hashim N, Noordin MI, Khalifa SA, Ramli F, Mohd Ali H, et al.
    PLoS One, 2015;10(6):e0128157.
    PMID: 26030925 DOI: 10.1371/journal.pone.0128157
    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques.
    Matched MeSH terms: Staphylococcus aureus/cytology; Staphylococcus aureus/drug effects*; Staphylococcus aureus/ultrastructure*; Methicillin-Resistant Staphylococcus aureus/cytology; Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/ultrastructure
  8. Abu Hanifah Y
    Malays J Pathol, 1990 Dec;12(2):107-9.
    PMID: 2102965
    448 isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical specimens of patients from the University Hospital, Kuala Lumpur, were phage-typed. These included 35 strains causing two separate outbreaks of infection, one in surgical Ward 6B and another in the Special Care Nursery (SCN). Antibiograms of these outbreak strains in Ward 6B and SCN were entirely different. Phage-typing revealed that 72% of the MRSA isolates were typable. They were typed entirely by Group III phages, the majority (76%) of which were phage type 85. There was only one isolate in SCN which was typed by Group I (phage 80) and Group III phages. None were typed by phages 94, 95, 96 and Group II phages. 14.6% of the typable isolates gave the long pattern reaction of the phage 6/47/54/75/77/83A/84/85 complex. The majority of the outbreak strains in Ward 6B were of phage type 85, whereas those in the SCN were all of the 6/47/54/75/77/83A/84 phage pattern with the exception of one isolate which was also typed by phage 80, a Group I phage.
    Matched MeSH terms: Staphylococcus aureus/classification*
  9. Sheikh J, Swee TT, Saidin S, Yahya AB, Malik SA, Yin JSS, et al.
    Med Biol Eng Comput, 2021 May;59(5):1055-1063.
    PMID: 33866479 DOI: 10.1007/s11517-021-02360-8
    Ultraviolet-C sourced LED (UVC-LED) has been widely used for disinfection purposes due to its germicidal spectrum. In this study, the efficiencies of UVC-LED for Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) disinfections were investigated at three exposure distances (1, 1.5, and 2 cm) and two exposure times (30 and 60 s). The respective bacterial inhibition zones were measured, followed by a morphological analysis under SEM. The viabilities of human skin fibroblast cells were further evaluated under the treatment of UVC-LED with the adoption of aforesaid exposure parameters. The inhibition zones were increased with the increment of exposure distances and times. The highest records of 5.40 ± 0.10 cm P. aeruginosa inhibition and 5.43 ± 0.11 cm S. aureus inhibition were observed at the UVC-LED distance of 2 cm and 60-s exposure. Bacterial physical damage with debris formation and reduction in size were visualized following the UVC-LED exposures. The cell viability percentages were in a range of 75.20-99.00% and 82-100.00% for the 30- and 60-s exposures, respectively. Thus, UVC-LED with 275-nm wavelength is capable in providing bacterial disinfection while maintaining accountable cell viability which is suitable to be adopted in wound treatment. Bacterial disinfection and human skin fibroblast cell assessment using UVC-LED.
    Matched MeSH terms: Staphylococcus aureus*
  10. Allotey P, Reidpath DD
    Lancet, 2021 03 20;397(10279):1058.
    PMID: 33743860 DOI: 10.1016/S0140-6736(21)00379-2
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  11. Samsudin N, Chua WC, Hasan H, Hassan SA, Deris ZZ
    Malays J Pathol, 2024 Apr;46(1):95-102.
    PMID: 38682849
    Borderline oxacillin-resistant Staphylococcus aureus (BORSA) are mecA-negative strains with oxacillin minimum inhibitor concentration (MIC) close to the resistance breakpoint of ≥ 4μg/mL. Instead of producing penicillin-binding protein with low affinity to methicillin (oxacillin) mediated by mecA gene as in methicillin-resistant S. aureus (MRSA), BORSA strains are characterised by the hyperproduction of β-lactamase enzymes, thus able to break down methicillin. Common laboratory methods to detect MRSA such as cefoxitin disk diffusion alone may fail to detect methicillin resistance due to BORSA. We report five cases of BORSA blood-stream infections in a university teaching hospital. All isolates were found to be susceptible to cefoxitin using disk diffusion, resistant to oxacillin using automated MIC method, and did not harbour mecA gene. All patients were suscessfully treated with anti-MRSA antibiotics, and removal of primary sources were done if identified. A more cost-effective method for screening and diagnosis of BORSA is needed in addition to cefoxitin disk diffusion test, in order to monitor the spread, and to enable routine detection and treatment of this pathogen.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/isolation & purification; Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  12. Al-Talib H, Yean CY, Al-khateeb A, Singh KK, Hasan H, Al-Jashamy K, et al.
    Curr Microbiol, 2010 Jul;61(1):1-6.
    PMID: 20033170 DOI: 10.1007/s00284-009-9567-8
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) is responsible for nosocomial and community-acquired infections. Hence, rapid and accurate laboratory diagnosis of MRSA is a vital constituent of control measures. The present study evaluated five different methods for the identification of MRSA. A total of 207 S. aureus clinical isolates that consisted of 89 MRSA and 118 methicillin-susceptible S. aureus (MSSA) strains confirmed by PCR were tested. MRSA strains were evaluated by five different methods: chromogenic MRSA agar (CMRSA), oxacillin resistance screening agar base (ORSAB), mannitol salt oxacillin agar (MSO), mannitol salt cefoxitin agar with two different concentrations of cefoxitin [4 microg/ml (MSC-4) and 6 microg/ml (MSC-6)]. The results of the different methods were compared to mecA PCR as the gold standard. MSC-6 showed only six false-positive MRSA in comparison with PCR. The sensitivities and specificities of MSC-6, MSC-4, MSO-4, ORSAB, and CMRSA were as follows: 98.9/94.9%, 100/83.1%, 89.9/87.3%, 97.8/96.6%, and 95.5/94.9%, respectively. In comparison with PCR, it was found that both MSC-6 and ORSAB were relatively the least expensive screening tests ($0.70 and $1.00, respectively). In conclusion, all methods were comparable, but MSC-6 was the least expensive medium for MRSA screening.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/genetics; Staphylococcus aureus/growth & development; Staphylococcus aureus/isolation & purification; Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/growth & development; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  13. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  14. Hanifah YA
    Singapore Med J, 1991 Dec;32(6):438-40.
    PMID: 1788605
    Twenty-one isolates of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia (M-MRSA) derived from various sources associated with nosocomial infections were phage-typed and compared with 54 international isolates associated with epidemic and sporadic episodes of infections. It appeared that the majority of M-MRSA were non-typable by the international basic set of phages. Two (9.5%) were typed by phage 85. Phage-typing of MRSA revealed that the strains were almost completely restricted to phage groups III and a lesser portion to phage groups I and III.
    Matched MeSH terms: Staphylococcus aureus/classification*; Staphylococcus aureus/drug effects
  15. Lim YS, Jegathesan M, Koay AS
    Singapore Med J, 1985 Jun;26(3):304-6.
    PMID: 4048994
    Cultures of Staphylococcus aureus from eight food poisoning incidents in Malaysia were examined for their ability to produce enterotoxins. Five of the eight strains were found to be enterotoxigenic, the enterotoxins detected being A and E (three strains), A and C (one strain), and C (one strain). Penicillinase production was observed in four of the five enterotoxigenic strains; the penicillin·sensitive strain was also found to be coagulase-negative. The bacteriological and epidemiological investigations for confirming staphylococcal food poisoning are presented. The preventive measures to be taken in reducing such outbreaks are emphasized.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/metabolism*
  16. Beschastnov VV, Shirokova IY, Belyanina NA, Pogodin IE, Tulupov AA, Tochilina AG, et al.
    Sovrem Tekhnologii Med, 2024;16(1):45-52.
    PMID: 39421627 DOI: 10.17691/stm2024.16.1.05
    The aim of the investigation is to study the possibility of applying commercial wound coatings for treating infected wounds as a carrier matrix for bacteriophages.

    MATERIALS AND METHODS: Twelve varieties of commercial wound coverings based on biopolymers of natural and synthetic origin, a biological preparation Staphylophag produced by scientific-industrial association Microgen (Russia), registration certificate P N001973/01, and the S. aureus 3196 test strain (GenBank JARQZO000000000) isolated from a patient with a burn wound have been used in our work. The ability of commercial biological wound coatings to absorb solutions was examined by immersing them in a physiological solution (pH 7.0-7.2) followed by weighing. The lytic activity of three bacteriophage series against the test strain was studied using the Appelman method and a spot test. The lytic activity of the bacteriophage in the wound samples was studied within 7 days after its absorption by the wound coatings.

    RESULTS: The greatest volume of fluid was absorbed by the LycoSorb, NEOFIX FibroSorb Ag, Biatravm, and Chitocol-S wound coatings. All bacteriophage series have been found to have a high lytic activity against the test strain. It has also been shown that Chitocol-S, Collachit-FA, Algipran, and Aquacel Ag Extra possessed their own inherent antibacterial activity under in vitro conditions stable for 7 days; moreover, the lysis zones of the test strain increased after their saturation with bacteriophage. On day 0, a high level of bacteriophage lytic activity with the maximum size of the test strain lysis zones from 49 to 59 mm have been found to remain in all samples of the wound coverings. The bacteriophage activity persisted for 1 day in the samples of Hydrofilm, Polypran, and NEOFIX FibroCold Ag coatings, up to 4 days in Algipran, Nano-Aseptica, and Biatravm coatings; and for 7 days in the Chitocol-S, Collachit-FA, Opsite Post-Op Visible, NEOFIX FibroSorb Ag, Aquacel Ag Extra, and LycoSorb samples.

    CONCLUSION: Modern commercial wound dressings based on chitosan-collagen complex (Chitocol-S, Collachit-FA), polyurethane (Opsite Post-Op Visible, LycoSorb, NEOFIX FibroSorb Ag), and Hydrofiber (Aquacel Ag Extra) have a sufficient level of bacteriophage solution absorption, provide a stable preservation of the bacteriophage lytic activity under in vitro conditions up to 7 days. Thus, the in vitro studies prove the possibility of their use as a carrier matrix for bacteriophages.

    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/virology
  17. Rozaini AZA, Abdulhameed A, Deivasigamani R, Nadzreen N, Zin NM, Kayani AA, et al.
    Electrophoresis, 2023 Aug;44(15-16):1220-1233.
    PMID: 37259263 DOI: 10.1002/elps.202200276
    Characterization of antibiotic-resistant bacteria is a significant concern that persists for the rapid classification and analysis of the bacteria. A technology that utilizes the manipulation of antibiotic-resistant bacteria is key to solving the significant threat of these pathogenic bacteria by rapid characterization profile. Dielectrophoresis (DEP) can differentiate between antibiotic-resistant and susceptible bacteria based on their physical structure and polarization properties. In this work, the DEP response of two Gram-positive bacteria, namely, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-susceptible S. aureus (MSSA), was investigated and simulated. The DEP characterization was experimentally observed on the bacteria influenced by oxacillin and vancomycin antibiotics. MSSA control without antibiotics has crossover frequencies ( f x 0 ${f_{x0}}$ ) from 6 to 8 MHz, whereas MRSA control is from 2 to 3 MHz. The f x 0 ${f_{x0}}$ changed when bacteria were exposed to the antibiotic. As for MSSA, the f x 0 ${f_{x0}}$ decreased to 3.35 MHz compared to f x 0 ${f_{x0}}$ MSSA control without antibiotics, MRSA, f x 0 ${f_{x0}}$ increased to 7 MHz when compared to MRSA control. The changes in the DEP response of MSSA and MRSA with and without antibiotics were theoretically proven using MyDEP and COMSOL simulation and experimentally based on the modification to the bacteria cell walls. Thus, the DEP response can be employed as a label-free detectable method to sense and differentiate between resistant and susceptible strains with different antibiotic profiles. The developed method can be implemented on a single platform to analyze and identify bacteria for rapid, scalable, and accurate characterization.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  18. Salim MM, Malek NANN
    PMID: 26652350 DOI: 10.1016/j.msec.2015.09.099
    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.
    Matched MeSH terms: Staphylococcus aureus/growth & development*
  19. Jamali H, Radmehr B, Ismail S
    J Dairy Sci, 2014;97(4):2226-30.
    PMID: 24534509 DOI: 10.3168/jds.2013-7509
    The aims of this study were to determine the prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis in Varamin, Tehran Province, Iran. All of the isolated Staph. aureus were identified by morphology and culture and confirmed using the API Staph identification system (bioMérieux, Marcy-l'Étoile, France). Antibiotic resistance genes were detected by PCR with oligonucleotide primers specific for each gene. Staphylococcus aureus was recovered from 43 of 207 (20.1%) bovine clinical milk samples. Using disk diffusion, methicillin-resistant Staph. aureus was detected in 5 of 43 (11.6%) samples. The pathogen showed high resistance against penicillin G (86%) and tetracycline (76.7%). The blaZ (penicillin) (86%), tetM (tetracycline), and ermC (erythromycin) genes (39.5% each) were the most prevalent antibiotic resistance genes. The findings of this study are useful for designing specific control programs for bovine clinical mastitis caused by Staph. aureus in this region of Iran.
    Matched MeSH terms: Staphylococcus aureus/drug effects*; Staphylococcus aureus/genetics; Staphylococcus aureus/metabolism; Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/metabolism
  20. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN
    PMID: 26060128 DOI: 10.1186/s12906-015-0699-z
    The inhibition of penicillin-binding protein 2a (PBP2a) is a promising solution in overcoming resistance of methicillin resistance Staphylococcus aureus (MRSA). A potential approach in achieving this is by combining natural product with currently available antibiotics to restore the activity as well as to amplify the therapeutic ability of the drugs. We studied inhibition effects of a bioactive fraction, F-10 (isolated from the leaves of Duabanga grandiflora) alone and in combination with a beta-lactam drug, ampicillin on MRSA growth and expression of PBP2a. Additionally, phytochemical analysis was conducted on F-10 to identify the classes of phytochemicals present.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/growth & development; Staphylococcus aureus/metabolism; Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/growth & development; Methicillin-Resistant Staphylococcus aureus/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links