Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Daud SS, Ibrahim K, Choong SS, Vengidasan L, Chong LA, Ariffin H
    Anal Biochem, 2010 Feb 15;397(2):181-5.
    PMID: 19822126 DOI: 10.1016/j.ab.2009.10.008
    Following hematopoietic stem cell transplantation (HSCT), it is important to determine whether engraftment is successful and to track the dynamic changes of the graft. Tandem repeats such as minisatellites and microsatellites are currently the most established markers for chimerism application. We have developed a reliable method to quantitatively evaluate engraftment status in post-allogeneic HSCT patients using variable number of tandem repeat (VNTR) markers and "lab-on-a-chip" microfluidic electrophoresis technology. Following identification of an informative marker by conventional polymerase chain reaction (PCR), donor chimerism percentage was calculated based on a standard curve generated from artificially mixed patient-donor DNA-specific alleles in serial dilutions. All PCR products were mixed with commercial gel dye and loaded into Agilent DNA 1000 microfluidic LabChips for DNA sizing and quantitation. In 44 patients, separation of pretransplant and donor DNA fragments was resolved clearly and accomplished rapidly within 30min. Chimerism analysis using this platform is able to detect an amount as low as 6.3% donor DNA with acceptable coefficient of variation values. We also demonstrated concordant chimerism analysis findings using both microchip tandem repeats and real-time PCR quantitation of insertion-deletion polymorphisms. This microchip platform obviates the need for fluorescently labeled primers or any post-PCR sample manipulation. Quantitative monitoring of post-HSCT chimerism status using microfluidic electrophoresis is a useful tool for both large- and small-scale post-HSCT chimerism centers.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  2. Mirzapour T, Tengku Ibrahim TAB, Movahedin M, Nowroozi MR
    Andrologia, 2017 Sep;49(7).
    PMID: 27682317 DOI: 10.1111/and.12700
    Destruction of spermatogonial stem cells (SSCs) along the chemotherapy and radiotherapy is one of the side effects of cancer treatments that lead to infertility. In vitro propagation of hSSCs is necessary to obtain an adequate number of cells for successful transplantation. In this study, hSSCs were isolated from testis biopsies of the patients with maturation arrest and proliferated in DMEM in the presence of LIF and bFGF for 5 weeks. The various types of human spermatogonia were identified in culture system and compared with testis tissue using morphological criteria at the ultrastructural level. The results showed that although many various types of spermatogonia were identified, but no remarkable difference was observed between spermatogonial cells in culture system and testis tissue. Electron and light microscopic studies of hSSC colonies did not show differentiated SSCs in the culture system. The results also showed that probably the suitable time for transplanting of SSCs in recipient testis is 2-3 weeks after culture. Because apoptosis which may affect the development of germ cells has not started in colony cells at this time and the population of apoptotic cells are low.
    Matched MeSH terms: Stem Cell Transplantation/methods
  3. Deng D, Zhang P, Guo Y, Lim TO
    Ann Rheum Dis, 2017 Aug;76(8):1436-1439.
    PMID: 28478399 DOI: 10.1136/annrheumdis-2017-211073
    OBJECTIVE: We evaluate the efficacy of human umbilical cord-derived mesenchymal stem cell (hUC-MSC) for the treatment of lupus nephritis (LN). Previous reports showed hUC-MSC could have dramatic treatment effect.

    METHODS: Eighteen patients with WHO class III or IV LN were randomly assigned to hUC-MSC (dose 2×108 cells) or placebo. All patients received standard immunosuppressive treatment, which consisted of intravenous methylprednisolone and cyclophosphamide, followed by maintenance oral prednisolone and mycophenolate mofetil.

    RESULTS: Remission occurred in 9 of 12 patients (75%) in the hUC-MSC group and 5 of 6 patients (83%) in the placebo group. Remission was defined as stabilisation or improvement in renal function, reduction in urinary red cells and protein. A similar proportion of patients on hUC-MSC and placebo achieved complete remission. Improvements in serum albumin, complement, renal function, Systemic Lupus Erythematosus Disease Activity Index and British Isles Lupus Assessment Group scores were similar in both groups. One patient on placebo had a stroke and another had ascites. One patient on hUC-MSC had leucopenia, pneumonia and subcutaneous abscess and another died of severe pneumonia. The trial was abandoned after 18 patients were enrolled when it had become obvious it would not demonstrate a positive treatment effect.

    CONCLUSION: hUC-MSC has no apparent additional effect over and above standard immunosuppression.

    TRIAL REGISTRATION NUMBER: NCT01539902; Results.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  4. Kuan JW, Law CS, Wong XQ, Ko CT, Awang ZH, Chew LP, et al.
    Appl Radiat Isot, 2016 Oct;116:13-21.
    PMID: 27472826 DOI: 10.1016/j.apradiso.2016.07.016
    Radioimmunotherapy is an established treatment modality in Non-Hodgkin's lymphoma. The only two commercially available radioimmunotherapies - (90)Y-ibritumomab tiuxetan is expensive and (131)I-tositumomab has been discontinued from commercial production. In resource limited environment, self-labelling (131)I-rituximab might be the only viable practical option. We reported our pioneer experience in Malaysia on self-labelling (131)I-rituximab, substituting autologous haematopoietic stem cell transplantation (HSCT) and a patient, the first reported case, received high dose (131)I-rituximab (6000MBq/163mCi) combined with BEAM conditioning for autologous HSCT.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  5. Yeh SP, Lin CC, Lin CH, Lo WC, Chen TT, Lo WJ, et al.
    Bone Marrow Transplant, 2015 Jul;50(7):1001-3.
    PMID: 25867646 DOI: 10.1038/bmt.2015.67
    Matched MeSH terms: Peripheral Blood Stem Cell Transplantation/methods*
  6. Iida M, Kodera Y, Dodds A, Ho AYL, Nivison-Smith I, Akter MR, et al.
    Bone Marrow Transplant, 2019 Dec;54(12):1973-1986.
    PMID: 31089289 DOI: 10.1038/s41409-019-0554-9
    Between 2005 and 2015, 138,165 hematopoietic stem cell transplantation (HSCT) were reported in 18 countries/regions in the Asia-Pacific region. In this report, we describe current trends in HSCT throughout the Asia-Pacific region and differences among nations in this region and various global registries. Since 2008, more than 10,000 HSCTs have been recorded each year by the Asia-Pacific Blood and Marrow Transplantation Group Data Center. Between 2005 and 2015, the greatest increase in the number of HSCTs was observed in Vietnam. Allogeneic HSCT was performed more frequently than autologous HSCT, and a majority of cases involved related donors. Regarding allogeneic HSCT, the use of cord blood has remained steady, especially in Japan, and the number of cases involving related HLA non-identical donors has increased rapidly, particularly in China. The incidence of hemoglobinopathy, a main indication for allogeneic HSCT in India, China, Iran, and Pakistan, increased nearly six-fold over the last decade. Among the 18 participating countries/regions, the transplant rate per population varied widely according to the absolute number of HSCTs and the national/regional population size. We believe that this report will not only benefit the AP region but will also provide information about HSCT to other regions worldwide.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  7. Gopurappilly R, Pal R, Mamidi MK, Dey S, Bhonde R, Das AK
    CNS Neurol Disord Drug Targets, 2011 Sep 1;10(6):741-56.
    PMID: 21838668
    Stroke causes a devastating insult to the brain resulting in severe neurological deficits because of a massive loss of different neurons and glia. In the United States, stroke is the third leading cause of death. Stroke remains a significant clinical unmet condition, with only 3% of the ischemic patient population benefiting from current treatment modalities, such as the use of thrombolytic agents, which are often limited by a narrow therapeutic time window. However, regeneration of the brain after ischemic damage is still active days and even weeks after stroke occurs, which might provide a second window for treatment. Neurorestorative processes like neurogenesis, angiogenesis and synaptic plasticity lead to functional improvement after stroke. Stem cells derived from various tissues have the potential to perform all of the aforementioned processes, thus facilitating functional recovery. Indeed, transplantation of stem cells or their derivatives in animal models of cerebral ischemia can improve function by replacing the lost neurons and glial cells and by mediating remyelination, and modulation of inflammation as confirmed by various studies worldwide. While initially stem cells seemed to work by a 'cell replacement' mechanism, recent research suggests that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. Moreover, ongoing human trials have encouraged hopes for this new method of restorative therapy after stroke. This review describes up-to-date progress in cell-based therapy for the treatment of stroke. Further, as we discuss here, significant hurdles remain to be addressed before these findings can be responsibly translated to novel therapies. In particular, we need a better understanding of the mechanisms of action of stem cells after transplantation, the therapeutic time window for cell transplantation, the optimal route of cell delivery to the ischemic brain, the most suitable cell types and sources and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment. An integrated approach of cell-based therapy with early-phase clinical trials and continued preclinical work with focus on mechanisms of action is needed.
    Matched MeSH terms: Stem Cell Transplantation/methods*
  8. Lye KL, Nordin N, Vidyadaran S, Thilakavathy K
    Cell Biol Int, 2016 Jun;40(6):610-8.
    PMID: 26992453 DOI: 10.1002/cbin.10603
    Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods
  9. Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, et al.
    Cell Biol Int, 2021 Oct;45(10):1999-2016.
    PMID: 34245637 DOI: 10.1002/cbin.11652
    Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  10. Venugopal C, K S, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A
    Curr Gene Ther, 2018;18(5):307-323.
    PMID: 30209999 DOI: 10.2174/1566523218666180913152615
    INTRODUCTION: Mesenchymal Stem Cell (MSC) therapy in recent years has gained significant attention. Though the functional outcomes following MSC therapy for neurodegenerative diseases are convincing, various mechanisms for the functional recovery are being debated. Nevertheless, recent studies convincingly demonstrated that recovery following MSC therapy could be reiterated with MSC secretome per se thereby shifting the dogma from cell therapy to cell "based" therapy. In addition to various functional proteins, stem cell secretome also includes extracellular membrane vesicles like exosomes. Exosomes which are of "Nano" size have attracted significant interest as they can pass through the bloodbrain barrier far easily than macro size cells or growth factors. Exosomes act as a cargo between cells to bring about significant alterations in target cells. As the importance of exosomes is getting unveil, it is imperial to carry out a comprehensive study to evaluate the neuroprotective potential of exosomes as compared to conventional co-culture or total condition medium treatments.

    OBJECTIVE: Thus, the present study is designed to compare the neuroprotective potential of MSC derived exosomes with MSC-condition medium or neuron-MSC-co-culture system against kainic acid induced excitotoxicity in in vitro condition. The study also aims at comparing the neuroprotective efficacy of exosomes/condition medium/co-culture of two MSC viz., neural crest derived human Dental Pulp Stem Cells (hDPSC) and human Bone-Marrow Mesenchymal Stem Cells (hBM-MSC) to identify the appropriate MSC source for treating neurodegenerative diseases.

    RESULT: Our results demonstrated that neuroprotective efficacy of MSC-exosomes is as efficient as MSC-condition medium or neuron-MSC co-culture system and treating degenerating hippocampal neurons with all three MSC based approaches could up-regulate host's endogenous growth factor expressions and prevent apoptosis by activating cell survival PI3K-B-cell lymphoma-2 (Bcl-2) pathway.

    CONCLUSION: Thus, the current study highlights the possibilities of treating neurodegenerative diseases with "Nano" size exosomes as opposed to transplanting billions of stem cells which inherit several disadvantages.

    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  11. Pati S, Muthuraju S, Hadi RA, Huat TJ, Singh S, Maletic-Savatic M, et al.
    Curr Stem Cell Res Ther, 2016;11(2):149-57.
    PMID: 26763886
    Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  12. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Mohr TJ, et al.
    Cytotherapy, 2010;12(1):31-7.
    PMID: 19878080 DOI: 10.3109/14653240903313966
    Bone marrow (BM) mesenchymal stromal cells (MSC) represent a novel therapy for severe heart failure with extensive myocardial scarring, especially when performed concurrently with conventional revascularization. However, stem cells are difficult to transport in culture media without risk of contamination, infection and reduced viability. We tested the feasibility and safety of off-site MSC culture and expansion with freeze-controlled cryopreservation and subsequent rapid thawing of cells immediately prior to implantation to treat severe dilated ischemic cardiomyopathy.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  13. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods
  14. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  15. Jahan D, Peile E, Sheikh MA, Islam S, Parasnath S, Sharma P, et al.
    Expert Rev Anti Infect Ther, 2021 10;19(10):1259-1280.
    PMID: 33711240 DOI: 10.1080/14787210.2021.1902304
    INTRODUCTION: Hematopoietic Stem Cell Transplantation (HSCT) is a life-saving procedure for multiple types of hematological cancer, autoimmune diseases, and genetic-linked metabolic diseases in humans. Recipients of HSCT transplant are at high risk of microbial infections that significantly correlate with the presence of graft-versus-host disease (GVHD) and the degree of immunosuppression. Infection in HSCT patients is a leading cause of life-threatening complications and mortality.

    AREAS COVERED: This review covers issues pertinent to infection in the HSCT patient, including bacterial and viral infection; strategies to reduce GVHD; infection patterns; resistance and treatment options; adverse drug reactions to antimicrobials, problems of antimicrobial resistance; perturbation of the microbiome; the role of prebiotics, probiotics, and antimicrobial peptides. We highlight potential strategies to minimize the use of antimicrobials.

    EXPERT OPINION: Measures to control infection and its transmission remain significant HSCT management policy and planning issues. Transplant centers need to consider carefully prophylactic use of antimicrobials for neutropenic patients. The judicious use of appropriate antimicrobials remains a crucial part of the treatment protocol. However, antimicrobials' adverse effects cause microbiome diversity and dysbiosis and have been shown to increase morbidity and mortality.

    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods
  16. Suhaeb AM, Naveen S, Mansor A, Kamarul T
    Indian J Exp Biol, 2012 Jun;50(6):383-90.
    PMID: 22734248
    Despite being a complex degenerative joint disease, studies on osteoarthritis (OA) suggest that its progression can be reduced by the use of hyaluronic acid (HA) or mesenchymal stem cells (MSC). The present study thus aims to examine the effects of MSC, HA and the combination of HA-MSC in treating OA in rat model. The histological observations using O'Driscoll score indicate that it is the use of HA and MSC independently and not their combination that delays the progression of OA. In conclusion, the preliminary study suggest that the use of either HA or MSCs effectively reduces OA progression better than their combined use.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  17. Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY
    Int J Clin Exp Pathol, 2015;8(10):12041-52.
    PMID: 26722389
    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  18. Choong SS, Rosmanizam S, Ibrahim K, Gan GG, Ariffin H
    Int J Lab Hematol, 2011 Apr;33(2):182-6.
    PMID: 20868447 DOI: 10.1111/j.1751-553X.2010.01264.x
    Analysis of variable number tandem repeats (VNTRs) by polymerase chain reaction (PCR) is a common method used to predict engraftment status in post-allogeneic haematopoeitic stem cell transplantation (HSCT) patients. Different populations have different copies of repeated DNA sequence and hence, different percentage of informativeness between patient and donor.
    Matched MeSH terms: Hematopoietic Stem Cell Transplantation/methods*
  19. Teh SW, Mok PL, Abd Rashid M, Bastion MC, Ibrahim N, Higuchi A, et al.
    Int J Mol Sci, 2018 Feb 13;19(2).
    PMID: 29438279 DOI: 10.3390/ijms19020558
    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods*
  20. Yeo GEC, Ng MH, Nordin FB, Law JX
    Int J Mol Sci, 2021 May 27;22(11).
    PMID: 34072224 DOI: 10.3390/ijms22115749
    Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
    Matched MeSH terms: Mesenchymal Stem Cell Transplantation/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links