Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Dh HS, Sultana R, Prabhu A, S R P, Mohanto S, Subramaniyan V
    Biomed Pharmacother, 2024 May;174:116533.
    PMID: 38574626 DOI: 10.1016/j.biopha.2024.116533
    INTRODUCTION: Diabetic nephropathy is a type of kidney disorder that develops as a complication of multifactorial diabetes. Diabetic nephropathy is characterized by microangiopathy, resulting from glucose metabolism, oxidative stress, and changes in renal hemodynamics. This study strived to evaluate the in vitro cytoprotective activity of atorvastatin (ATR), and quercetin (QCT) alone and in combination against diabetic nephropathy.

    METHODS: The MTT assay was utilized to analyze the effects of the test compounds on NRK-52E rat kidney epithelial cells. The detection of apoptosis and ability to scavenge free radicals was assessed via acridine orange-ethidium bromide (AO-EB) dual fluorescence staining, and 2,2-diphenyl-1-picrylhydrazyfree assay (DPPH), respectively. The ability of anti-inflammatory effect of the test compounds and western blot analysis against TGF-β, TNF-α, and IL-6 further assessed to determine the combinatorial efficacy.

    RESULTS: Atorvastatin and quercetin treatment significantly lowered the expression of TGF-β, TNF-α, and IL-6 indicating the protective role in Streptozotocin-induced nephrotoxicity. The kidney cells treated with a combination of atorvastatin and quercetin showed green fluorescing nuclei in the AO-EB staining assay, indicating that the combination treatment restored cell viability. Quercetin, both alone and in combination with atorvastatin, demonstrated strong DPPH free radical scavenging activity and further encountered an anti-oxidant and anti-inflammatory effect on the combination of these drugs.

    CONCLUSION: Nevertheless, there is currently no existing literature that reports on the role of QCT as a combination renoprotective drug with statins in the context of diabetic nephropathy. Hence, these findings suggest that atorvastatin and quercetin may have clinical potential in treating diabetic nephropathy.

    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  2. Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R
    Exp Biol Med (Maywood), 2023 Aug;248(16):1425-1436.
    PMID: 37873757 DOI: 10.1177/15353702231199466
    Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  3. Muniyandi RC, Zin AM, Sanders JW
    Biosystems, 2013 Dec;114(3):219-26.
    PMID: 24120990 DOI: 10.1016/j.biosystems.2013.09.008
    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  4. Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, et al.
    Eur J Med Chem, 2020 Apr 01;191:112154.
    PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154
    Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism; Receptors, Transforming Growth Factor beta/metabolism
  5. Wong SF, Seow HF, Lai LC
    Malays J Pathol, 2003 Dec;25(2):129-34.
    PMID: 16196369
    Transforming growth factor-beta (TGFbeta) is present, predominantly in latent forms, in normal and malignant breast tissue. The mechanisms by which latent TGFbeta is activated physiologically remain largely an enigma. The objective of this study was to assess whether the proteases, cathepsin D and prostate specific antigen (PSA) could activate latent TGFbeta1 and TGFbeta2 in conditioned media of the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines, newly purchased from ATCC. Both of the cell lines were seeded in 6-well plates 2 days prior to treatment with varying concentrations of cathepsin D and PSA. Active TGFbeta1 and TGFbeta2 in the media were then measured by ELISA after 4, 8, 24 and 72 hours of treatment. TGFbeta1 and TGFbeta2 mRNA expression of both cell lines were measured by RT-PCR to determine whether any increase in level of active TGFbeta1 and TGFbeta2 was due to increased production. There was a significant increase in only active TGFbeta2 levels in the MDA-MB-231 cell line with both treatments. Cathepsin D and PSA did not have any effect on TGFbeta1 and TGFbeta2 mRNA expression. Cathepsin D and PSA were unable to activate latent TGFbeta1 and TGFbeta2 in these two breast cancer cell lines. A constant level of TGFbeta2 mRNA in the control and treated MDA-MB-231 cells suggests that the increase in level of active TGFbeta2 was not a result of increased production but was likely to be due to activation by a mechanism independent of cathepsin D and PSA.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  6. Khaghani SAB, Akbarova G, Soon CF, Dilbazi G
    Cell Tissue Bank, 2018 Dec;19(4):763-775.
    PMID: 30377863 DOI: 10.1007/s10561-018-9732-z
    Cytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 105 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis.
    Matched MeSH terms: Receptors, Transforming Growth Factor beta/metabolism
  7. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  8. Muniyandi RC, Zin AM
    Pak J Biol Sci, 2011 Dec 15;14(24):1100-8.
    PMID: 22335049
    Ligand-Receptor Networks of TGF-beta plays essential role in transmitting a wide range of extracellular signals that affect many cellular processes such as cell growth. However, the modeling of these networks with conventional approach such as ordinary differential equations has not taken into account, the spatial structure and stochastic behavior of processes involve in these networks. Membrane computing as the alternatives approach provides spatial structure for molecular computation in which processes are evaluated in a non-deterministic and maximally parallel way. This study is carried out to evaluate the membrane computing model of Ligand-Receptor Networks of TGF-beta with model checking approach. The results show that membrane computing model has sustained the behaviors and properties of Ligand-Receptor Networks of TGF-beta. This reinforce that membrane computing is capable in analyzing processes and behaviors in hierarchical structure of cell such as Ligand-Receptor Networks of TGF-beta better than the deterministic approach of conventional mathematical models.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*; Receptors, Transforming Growth Factor beta/metabolism*
  9. Chong FW, Chakravarthi S, Nagaraja HS, Thanikachalam PM, Lee N
    Malays J Pathol, 2009 Jun;31(1):35-43.
    PMID: 19694312
    Cyclosporine A (CsA), a calcineurin inhibitor produced by the fungi Trichoderma polysporum and Cylindrocarpon lucidum, is an immunosuppressant prescribed in organ transplants to prevent rejection. Its adverse effect on renal dysfunction has limited its use in a clinical setting. Apigenin (4',5',7'-Trihydroxyflavone), a herbal extract, with anti-inflammatory and anti-tumour properties, has been investigated for properties to reverse this adverse effect. This research was conducted to establish a standard protocol for immunohistochemical estimation of Transforming Growth Factor beta (TGF-beta) expression, as an indicator of Cyclosporine A induced damage, and to observe whether apoptotic index and TGF-beta expression can be used to assess effects of Apigenin on CsA induced renal dysfunction. Six groups of 5 male Sprague-Dawley albino rats each were dosed once daily for 21 days, as follows: (1) negative control--oral corn oil, (2) positive control--Cyclosporine A (25 mg/kg), (3) Group 3--Apigenin (20 mg/kg), (4) Group 4--Cyclosporine A (25 mg/kg) +Apigenin (10 mg/kg), (5) Group 5--Cyclosporine A (25 mg/kg) +Apigenin (15 mg/kg) and (6) Group 6--Cyclosporine A (25 mg/kg) +Apigenin (20 mg/kg). Cyclosporine A was administered intra-peritoneally while Apigenin was given orally. The rat kidneys were harvested and examined microscopically to assess the apoptotic index, and stained by immunohistochemistry for multifunctioning polypeptide TGF-beta expression. A high apoptotic index and TGF-beta intensity was observed in the Cyclosporine A group. Apigenin significantly reduced the both apoptotic index and TGF-beta intensity. The apoptotic index correlated with TGF-beta intensity, especially in glomeruli. This study indicates that Cyclosporine A can enhance the TGF-beta expression in rat kidney, signifying accelerated apoptosis. TGF-beta and apoptotic index may be used to assess Apigenin and its effect on Cyclosporine A induced renal damage.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  10. Ramu A, Kathiresan S, Ali Ahmed B
    Phytomedicine, 2017 Sep 15;33:69-76.
    PMID: 28887922 DOI: 10.1016/j.phymed.2017.05.008
    BACKGROUND: Transforming growth factor-β (TGF-β) and its receptors are considered as a novel target in cancer chemotherapy. Gramine, an indole alkaloid, possesses various pharmacological properties including antiproliferative and anticancer. However, the anti-angiogenic property remains unexplored.

    PURPOSE: The present study was designed to evaluate the anti-angiogenic and apoptosis induction properties of gramine through inhibiting TGF-β on DMBA induced oral squamous cell carcinoma (OSCC) in the hamster buccal pouch (HBP).

    METHODS: The effects of gramine on TGF-β signalling in DMBA induced carcinogenic events such as angiogenesis and apoptosis were analysed by studying the mRNA expression using RT-PCR, protein expression by western blot and histopathological analysis using haematoxylin and eosin (H & E) staining.

    RESULTS: Gramine significantly inhibited phosphorylation and nuclear translocation of Smad2 and Smad4 by blocking activity of the TGFβ-RII, RI and activation of inhibitory Smad7. Gramine inhibited angiogenic markers such as MMP-2, MMP-9, HIF-1α, VEGF, and VEGF-R2 as well as increased TIMP-2 expression. Furthermore, gramine induced apoptosis in DMBA induced tumour bearing animals by up regulating the pro apoptotic proteins Bax, cytochrome C, apaf-1, caspase-9 caspase-3 and PARP.

    CONCLUSION: In this study, we clearly demonstrated that gramine treatment diminishes angiogenesis and induces apoptosis in hamster buccal pouch (HBP) carcinogenesis by modulating TGF-β signals.

    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  11. Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500396 DOI: 10.3390/molecules27238304
    The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  12. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*; Receptors, Transforming Growth Factor beta/metabolism
  13. Cheng HP, Huang CJ, Tsai ML, Ong HT, Cheong SK, Choo KB, et al.
    Int J Med Sci, 2021;18(8):1798-1809.
    PMID: 33746597 DOI: 10.7150/ijms.50871
    Cell migration and invasion are modulated by epithelial-to-mesenchymal transition (EMT) and the reverse MET process. Despite the detection of microRNA-362 (miR-362, both the miR-362-5p and -3p species) in cancers, none of the identified miR-362 targets is a mesenchymal or epithelial factor to link miR-362 with EMT/MET and metastasis. Focusing on the TGF-β/SMAD signaling pathway in this work, luciferase assays and western blot data showed that miR-362 targeted and negatively regulated expression of SMAD4 and E-cadherin, but not SNAI1, which is regulated by SMAD4. However, miR-362 knockdown also down-regulated SMAD4 and SNAI1, but up-regulated E-cadherin expression. Wound-healing and transwell assays further showed that miR-362 knockdown suppressed cell migration and invasion, effects which were reversed by over-expressing SMAD4 or SNAI1, or by knocking down E-cadherin in the miR-362 knockdown cells. In orthotopic mice, miR-362 knockdown inhibited metastasis, and displayed the same SMAD4 and E-cadherin expression profiles in the tumors as in the in vitro studies. A scheme is proposed to integrate miR-362 negative regulation via SMAD4, and to explain miR-362 positive regulation of SMAD4 via miR-362 targeting of known SMAD4 suppressors, BRK and DACH1, which would have resulted in SMAD4 depletion and annulment of subsequent involvement in TGF-β signaling actions. Hence, miR-362 both negatively and positively regulates SMAD4 expression in TGF-β/SMAD signaling pathway to suppress cell motility and invasiveness and metastasis, and may explain the reported clinical association of anti-miR-362 with suppressed metastasis in various cancers. MiR-362 knockdown in miR-362-positive cancer cells may be used as a therapeutic strategy to suppress metastasis.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  14. Ho CS, Yap SH, Phuah NH, In LL, Hasima N
    Lung Cancer, 2014 Feb;83(2):154-62.
    PMID: 24360396 DOI: 10.1016/j.lungcan.2013.11.024
    Dysregulation in miRNA expression contributes towards the initiation and progression of metastasis by regulating multiple target genes. In this study, variations in miRNA expression profiles were investigated between high and low invasive NSCLC cell lines followed by identification of miRNAs with targets governing NSCLC's metastatic potential.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  15. Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA
    J Wound Care, 2014 Aug;23(8):400, 402, 404-7.
    PMID: 25139598 DOI: 10.12968/jowc.2014.23.8.400
    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  16. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  17. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: Receptors, Transforming Growth Factor beta/metabolism
  18. S M N Mydin RB, Azlan A, Okekpa SI, Gooderham NJ
    Cell Biochem Funct, 2024 Mar;42(2):e3945.
    PMID: 38362935 DOI: 10.1002/cbf.3945
    MicroRNAs (miRNA) are small and conserved noncoding RNA molecules that regulate gene expression at the posttranscriptional level. These groups of RNAs are crucial in various cellular processes, especially in mediating disease pathogenesis, particularly cancer. The dysregulation of miRNAs was reported in many cancer types, including nasopharyngeal cancer (NPC), which is a malignant tumor of the nasopharynx. In this review, miRNAs involvement in crucial signaling pathways associated with NPC such as PTEN/PI3K/AKT, TGFβ/SMAD, RAS/MAPK, Wnt/β-catenin and pRB-E2F was investigated. miRNAs could function as tumor suppressor-miR or onco-miR in NPC profoundly influenced cell cycle, apoptosis, proliferation, migration, and metastasis. This comprehensive review of current literature provided a thorough profile of miRNAs and their interplay with the aforementioned signaling pathways in NPC. Understanding these molecular interactions could remarkably impact the diagnosis, prognosis, and therapeutic strategies for NPC.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  19. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Receptors, Transforming Growth Factor beta/metabolism*
  20. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links