Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
    Matched MeSH terms: Triple Negative Breast Neoplasms/genetics; Triple Negative Breast Neoplasms/pathology
  2. Zakaria Z, Zulkifle MF, Wan Hasan WAN, Azhari AK, Abdul Raub SH, Eswaran J, et al.
    Onco Targets Ther, 2019;12:7749-7756.
    PMID: 31571924 DOI: 10.2147/OTT.S214611
    Background: Epidermal growth factor receptor (EGFR) is a member of the ErbB family of tyrosine kinase receptor proteins that plays important roles in tumour cell survival and proliferation. EGFR has been reported to be overexpressed in up to 78% of triple-negative breast cancer (TNBC) cases suggesting it as a potential therapeutic target. The clinical trials of anti-EGFR agents in breast cancer showed low response rates. However, a subgroup of patients demonstrated response to EGFR inhibitors highlighting the necessity to stratify patients, who might benefit from effective combination therapy that could include anti EGFR-agents. Population variability in EGFR expression warrants systematic evaluation in specific populations.

    Purpose: To study EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort to determine the possibility of using anti-EGFR combinatorial therapy for this population.

    Patients and methods: In this study, we evaluated 58 cases of Malaysian TNBC patient samples for EGFR gene copy number alteration and EGFR protein overexpression using fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) methods, respectively.

    Results: EGFR protein overexpression was observed in about 30% while 15.5% displayed high EGFR copy number including 5.17% gene amplification and over 10% high polysomy. There is a positive correlation between EGFR protein overexpression and gene copy number and over expression of EGFR is observed in ten out of the 48 low copy number cases (20.9%) without gene amplification.

    Conclusion: This study provides the first glimpse of EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort emphasising the need for the nationwide large scale EGFR expression evaluation in Malaysia.

    Matched MeSH terms: Triple Negative Breast Neoplasms
  3. Yip CH, Bhoo Pathy N, Teo SH
    Med J Malaysia, 2014 Aug;69 Suppl A:8-22.
    PMID: 25417947 MyJurnal
    Four hundred and nineteen articles related to breast cancer were found in a search through a database dedicated to indexing all original data relevant to medicine published in Malaysia between the years 2000-2013. One hundred and fifty four articles were selected and reviewed on the basis of clinical relevance and future research implications. Overall, Malaysian women have poor survival from breast cancer and it is estimated that half of the deaths due to breast cancer could be prevented. Five-year survival in Malaysia was low and varies among different institutions even within the same disease stage, suggesting an inequity of access to optimal treatment or a lack of compliance to optimal treatment. Malaysian women have poor knowledge of the risk factors, symptoms and methods for early detection of breast cancer, leading to late presentation. Moreover, Malaysian women experience cancer fatalism, belief in alternative medicine, and lack of autonomy in decision making resulting in delays in seeking or avoidance of evidence-based medicine. There are ethnic differences in estrogen receptor status, HER2 overexpression and incidence of triple negative breast cancer which warrant further investigation. Malay women present with larger tumours and at later stages, and even after adjustment for these and other prognostic factors (stage, pathology and treatment), Malay women have a poorer survival. Although the factors responsible for these ethnic differences have not been elucidated, it is thought that pharmacogenomics, lifestyle factors (such as weight-gain, diet and exercise), and psychosocial factors (such as acceptance of 2nd or 3rd line chemotherapy) may be responsible for the difference in survival. Notably, survivorship studies show self-management programmes and exercise improve quality of life, highlighting the need to evaluate the psychosocial impact of breast cancer on Malaysian women, and to design culturally-, religiously- and linguistically-appropriate psycho-education programmes to help women cope with the disease and improve their quality of life. Research done in the Caucasian populations may not necessarily apply to local settings and it is important to embark on local studies particularly prevention, screening, diagnostic, prognostic, therapeutic and psychosocial research.
    Matched MeSH terms: Triple Negative Breast Neoplasms
  4. Venugopal V, Krishnan S, Palanimuthu VR, Sankarankutty S, Kalaimani JK, Karupiah S, et al.
    PLoS One, 2018;13(11):e0206109.
    PMID: 30408068 DOI: 10.1371/journal.pone.0206109
    The aim of the present study is to analyze the viability of anti-EGFR anchored immunonanoparticle (INP) bearing Paclitaxel (PTX) to specifically bind the EGFR protein on the TNBC cells. The NP was prepared by nanoprecipitation and characterized the particle size, charge, entrapment of drug and release of it. The anti-EGFR anchored and the integrity was confirmed by SDS-PAGE. Cytotoxicity and NPs cellular uptake was analyzed with MDA-MB-468 type cancer cells and the EGFR expression was confirmed by PCR, qualitatively and quantitatively. The in-vivo antitumor activity of INP was determined by using athymic mice model and targeting efficiency was measured by calculating the PTX accumulation in the tumor plasma. The prepared INP with the size of 336.3 nm and the charge of -3.48 mV showed sustained drug release upto 48 h. The INP showed significant reduction of cancer cell viability of 10.6% for 48 h with 93 fold higher PTX accumulation in the tumor plasma compared with NPs. Based on these reports, we recommend that anti-EGFR anchored PTX loaded NP may have the ability to target the TNBC cells and improve the therapeutic action and subsidize the side effects of PTX for the treatment of TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy*; Triple Negative Breast Neoplasms/pathology
  5. Tung J, Tew LS, Hsu YM, Khung YL
    Sci Rep, 2017 04 11;7(1):793.
    PMID: 28400564 DOI: 10.1038/s41598-017-00912-3
    Measuring at ~30 nm, a fully customizable holliday junction DNA nanoconstruct, was designed to simultaneously carry three unmodified SiRNA strands for apoptosis gene knockout in cancer cells without any assistance from commercial transfection kits. In brief, a holliday junction structure was intelligently designed to present one arm with a cell targeting aptamer (AS1411) while the remaining three arms to carry different SiRNA strands by means of DNA/RNA duplex for inducing apoptosis in cancer cells. By carrying the three SiRNA strands (AKT, MDM2 and Survivin) into triple negative breast MDA-MB-231 cancer cells, cell number had reduced by up to ~82% within 24 hours solely from one single administration of 32 picomoles. In the immunoblotting studies, up-elevation of phosphorylated p53 was observed for more than 8 hours while the three genes of interest were suppressed by nearly half by the 4-hour mark upon administration. Furthermore, we were able to demonstrate high cell selectivity of the nanoconstruct and did not exhibit usual morphological stress induced from liposomal-based transfection agents. To the best of the authors' knowledge, this system represents the first of its kind in current literature utilizing a short and highly customizable holliday DNA junction to carry SiRNA for apoptosis studies.
    Matched MeSH terms: Triple Negative Breast Neoplasms/genetics*
  6. Tieng FYF, Latifah SY, Md Hashim NF, Khaza'ai H, Ahmat N, Gopalsamy B, et al.
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323836 DOI: 10.3390/molecules24142619
    Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms
  7. Thakur V, Kutty RV
    J Exp Clin Cancer Res, 2019 Oct 28;38(1):430.
    PMID: 31661003 DOI: 10.1186/s13046-019-1443-1
    Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
    Matched MeSH terms: Triple Negative Breast Neoplasms/pathology; Triple Negative Breast Neoplasms/therapy*
  8. Thagaard J, Broeckx G, Page DB, Jahangir CA, Verbandt S, Kos Z, et al.
    J Pathol, 2023 Aug;260(5):498-513.
    PMID: 37608772 DOI: 10.1002/path.6155
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: Triple Negative Breast Neoplasms*
  9. Teoh PY, Tan GC, Mahsin H, Wong YP
    Malays J Pathol, 2019 Aug;41(2):125-132.
    PMID: 31427547
    INTRODUCTION: Androgen receptor (AR) is the most frequently expressed biomarker in all subtypes of breast carcinoma. Triple negative breast carcinoma (TNBC) is breast carcinoma that lacks oestrogen and progesterone receptors immunoexpression as well as absence of HER2/neu gene amplification. This makes targeted therapy not feasible in this cancer and hence has poorer prognosis. Detecting AR expression could be another milestone in the management of TNBC, as AR is a prognostic, predictive marker and potential index for targeted treatment. This study aimed to assess expression of AR in TNBC by immunohistochemistry and its association with clinicopathological parameters.

    METHODS: We analysed the expression of AR in 97 TNBC cases from Penang General Hospital for a period of 3 years (2014 to 2017). Androgen receptor immunoreactivity was considered positive if ≥ 1% of tumour cells nuclei were stained irrespective of staining intensity.

    RESULTS: The prevalence of AR expression in TNBC was 31% (30/97), with the proportion of AR-positive tumour cells ranged from 1% to 90%. These include 23 invasive carcinomas, no special type (NST) and 7 other invasive carcinoma subtypes (papillary, lobular, clear cell and medullary carcinomas). Sixty-seven cases (69%) that showed AR immunonegativity were invasive carcinomas, NST (n=60), clear cell carcinoma (n=1) and metaplastic carcinoma (n=6). Androgen receptor immunoexpression was inversely correlated with tumour grade (p=0.016), but not the tumour stage, tumour size and nodal status.

    CONCLUSION: AR is expressed in about one-third of TNBC and loss of AR immunoexpression does not predict adverse clinical outcomes. Larger cohorts for better characterisation of the role of AR immunoexpression in TNBC are warranted.

    Matched MeSH terms: Triple Negative Breast Neoplasms
  10. Sharmni Vishnu K, Win TT, Aye SN, Basavaraj AK
    BMC Cancer, 2022 Nov 05;22(1):1139.
    PMID: 36335316 DOI: 10.1186/s12885-022-10225-y
    BACKGROUND: Triple negative breast cancer (TNBC) is clinically aggressive breast cancer with a poor prognosis. Approximately 20% of TNBC has been found to express programmed death ligand 1 (PD-L1), making it a potential therapeutic target. As a PD-L1 inhibitor, atezolizumab is a recently approved immunotherapeutic drug for TNBC, this meta-analysis (MA) was aimed to review the randomized controlled trial studies (RCTs) of combined atezolizumab and nab-paclitaxel in the treatment of TNBC and synthesize the evidence-based results on its effectiveness and safety.

    METHOD: We searched PubMed, Embase, EBSCOhost and ClinicalTrials.gov for the eligible RCTs which compared the efficacy and safety of combined atezolizumab and nab-paclitaxel with nab-paclitaxel alone. The outcomes analyzed included overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and treatment-related adverse effects (AEs).

    RESULTS: A total of six RCTs were included in this MA. For efficacy, although OS was not significantly prolonged with combined atezolizumab and nab-paclitaxel (HR 0.90, 95% CI [0.79, 1.01], p=0.08), this combination therapy significantly improved PFS (HR 0.72, 95% CI [0.59, 0.87], p=0.0006) and ORR (RR 1.25, 95% CI [0.79, 1.01] p<0.00001). For safety, any AEs, haematological, gastrointestinal, and liver AEs showed no statistically significant differences between the atezolizumab and nab-paclitaxel combination group and nab-paclitaxel alone group. However, serious AEs, high grade, dermatological, pulmonary, endocrine, and neurological AEs were significantly lower with nab-paclitaxel alone compared to atezolizumab and nab-paclitaxel combined (p-value range from <0.00001 to 0,02).

    CONCLUSION: Atezolizumab combined with nab-paclitaxel was associated with improved outcomes in the treatment of TNBC; however, this combination resulted in more toxicity compared to nab-paclitaxel alone. While nab-paclitaxel alone produced chemotherapy-related AEs, the combination of atezolizumab with nab-paclitaxel produced AEs, especially immune-related AEs such as haematological, pulmonary, endocrine, and neurological AEs.

    TRIAL REGISTRATION: This research work of systematic review has been registered on PROSPERO (Registration number: CRD42022297952).

    Matched MeSH terms: Triple Negative Breast Neoplasms*
  11. Ramdas P, Radhakrishnan AK, Abdu Sani AA, Abdul-Rahman PS
    Nutr Cancer, 2019;71(8):1263-1271.
    PMID: 31084432 DOI: 10.1080/01635581.2019.1607407
    Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0-20 µg mL-1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL-1) or δT3 (4.0 µg mL-1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy; Triple Negative Breast Neoplasms/metabolism*; Triple Negative Breast Neoplasms/pathology
  12. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy*; Triple Negative Breast Neoplasms/metabolism; Triple Negative Breast Neoplasms/pathology
  13. Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al.
    Mol Oncol, 2016 06;10(6):921-37.
    PMID: 27055598 DOI: 10.1016/j.molonc.2016.03.002
    Triple-negative breast cancer (TNBC) is associated with high grade, metastatic phenotype, younger patient age, and poor prognosis. The discovery of an effective anti-TNBC agent has been a challenge in oncology. In this study, fifty-eight ester derivatives (DETDs) with a novel sesquiterpene dilactone skeleton were organically synthesized from a bioactive natural product deoxyelephantopin (DET). Among them, DETD-35 showed potent antiproliferative activities against a panel of breast cancer cell lines including TNBC cell line MDA-MB-231, without inhibiting normal mammary cells M10. DETD-35 exhibited a better effect than parental DET on inhibiting migration, invasion, and motility of MDA-MB-231 cells in a concentration-dependent manner. Comparative study of DETD-35, DET and chemotherapeutic drug paclitaxel (PTX) showed that PTX mainly caused a typical time-dependent G2/M cell-cycle arrest, while DETD-35 or DET treatment induced cell apoptosis. In vivo efficacy of DETD-35 was evaluated using a lung metastatic MDA-MB-231 xenograft mouse model. DETD-35 significantly suppressed metastatic pulmonary foci information along with the expression level of VEGF and COX-2 in SCID mice. DETD-35 also showed a synergistic antitumor effect with PTX in vitro and in vivo. This study suggests that the novel compound DETD-35 may have a potential to be further developed into a therapeutic or adjuvant agent for chemotherapy against metastatic TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy*; Triple Negative Breast Neoplasms/pathology
  14. Muhammad SNH, Yaacob NS, Safuwan NAM, Fauzi AN
    PMID: 33906591 DOI: 10.2174/1871520621666210427104804
    BACKGROUND: Survival and progression of cancer cells are highly dependent on aerobic glycolysis. Strobilanthes crispus has been shown to have promising anticancer effects on breast cancer cells. The involvement of the glycolysis pathway in producing these effects is unconfirmed, thus further investigation is required to elucidate this phenomenon.

    OBJECTIVE: This study aims to determine the effect of S. crispus active fraction (F3) and its bioactive components on glycolysis in triple-negative breast cancer cells (MDA-MB-231).

    METHODS: This study utilizes F3, lutein, β-sitosterol, and stigmasterol to be administered in MDA-MB-231 cells for measurement of antiglycolytic activities through cell poliferation, glucose uptake, and lactate concentration assays. Cell proliferation was assessed by MTT assay of MDA-MB-231 cells after treatment with F3 and its bioactive components lutein, β-sitosterol, and stigmasterol. The IC50 value in each compound was determined by MTT assay to be used in subsequent assays. The determination of glucose uptake activity and lactate concentration were quantified using fluorescence spectrophotometry.

    RESULTS: Antiproliferative activities were observed for F3 and its bioactive components, with IC50 values of 100 µg/mL (F3), 20 µM (lutein), 25 µM (β-sitosterol), and 90 μM (stigmasterol) in MDA-MB-231 cells at 48 h. The percentage of glucose uptake and lactate concentration in MDA-MB-231 cells treated with F3, lutein, or β sitosterol were significantly lower than those observed in the untreated cells in a time-dependent manner. However, treatment with stigmasterol decreased the concentration of lactate without affecting the glucose uptake in MDA-MB-231 cells.

    CONCLUSION: The antiglycolytic activities of F3 on MDA-MB-231 cells are attributed to its bioactive components.

    Matched MeSH terms: Triple Negative Breast Neoplasms
  15. Mohamad Hanif EA, Shah SA
    Asian Pac J Cancer Prev, 2018 Dec 25;19(12):3341-3351.
    PMID: 30583339
    Breast cancer treatments leads to variable responses. Hormonal therapy is beneficial to receptor positive breast cancer
    subtypes and display better clinical outcome than triple negative breast cancers (TNBCs) with FEC (5-Fluorouracil,
    Epirubicin and Cyclophosphamide) the mainstay chemotherapy regiment. Owning to their negative expressions of
    estrogen (ER), progesterone (PR) and HER2 receptors, disease recurrence and metastasis befalls some patients indicating
    resistance to FEC. Involvement of epigenetic silencing through DNA methylation, histone methylation, acetylation and
    sumoylation may be the key player in FEC chemoresistance. Epigenetic and molecular profiling successfully classified
    breast cancer subtypes, indicating potential driver mechanisms to the progression of TNBCs but functional mechanisms
    behind chemoresistance of these molecular markers are not well defined. Several epigenetic inhibitors and drugs have
    been used in the management of cancers but these attempts are mainly beneficial in hematopoietic cancers and not
    specifically favourable in solid tumours. Hypothetically, upon administration of epigenetic drugs, recovery of tumour
    suppressor genes is expected. However, high tendency of switching on global metastatic genes is predicted. Polycomb
    repressive complex (PRC) such as EZH2, SETD1A, DNMT, is known to have repressive effects in gene regulation and
    shown to inhibit cell proliferation and invasion in breast cancers. Individual epigenetic regulators may be an option
    to improve chemo-drug delivery in cancers. This review discussed on molecular signatures of various breast cancer
    subtypes and on-going attempts in understanding underlying molecular mechanisms of epigenetic regulators as well
    as providing insights on possible ways to utilize epigenetic enzymes/inhibitors with responses to chemotherapeutic
    drugs to re-program cellular and biological outcome in TNBCs.
    Matched MeSH terms: Triple Negative Breast Neoplasms/genetics*
  16. Mohamad Hanif EA
    Mol Biol Rep, 2019 Dec;46(6):6617-6624.
    PMID: 31552595 DOI: 10.1007/s11033-019-05079-w
    FEC chemo-resistance in triple negative breast cancer (TNBC) remains a challenge. Therefore it is crucial to determine the right treatment regime by understanding molecular mechanisms of driver regulators involved in the progression of TNBCs. This study aims to understand SETD1A mechanisms in TNBC development in two TNBC cell lines. SETD1A was transiently transfected in MDA-MB-468 (FEC good prognosis) and Hs578T (FEC poor prognosis). Regulation of potential targets miR205, EMT marker ZEB1 and LRG1 and proliferative marker Ki-67 were tested by RqPCR to elucidate SETD1A interactions. This study displayed significant recovery of miR205 with SETD1A depletion and reduction of ZEB1 in MDA-MB-468. However, ZEB1 remained unchanged in Hs578T indicating ZEB1 regulation may be outcompeted by other mechanisms associated with aggressive cell line characteristics and the expression of endogenous ZEB1 was relatively high in Hs578T. Elevation of LRG1 and declined Ki-67 were observed by SETD1A knocked down. Enhanced expression was observed by LRG1 in Hs578T and not in MDA-MB-468 suggesting LRG1 contributed to distinct poor FEC outcome in TNBCs. The underlying mechanism of SETD1A in miR205/ZEB1/Ki-67/LRG1 axis needs further evaluation. Whether abrogation of the pathway is indeed associated with transcriptional or post-transcriptional activation in TNBC cell lines models, clearly validation in clinical samples is warranted to achieve its prognostic and therapeutic values in TNBCs.
    Matched MeSH terms: Triple Negative Breast Neoplasms/genetics*
  17. Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I
    Biochimie, 2020 Dec;179:23-31.
    PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005
    Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
    Matched MeSH terms: Triple Negative Breast Neoplasms
  18. Kwong SC, Jamil AHA, Rhodes A, Taib NA, Chung I
    J Lipid Res, 2019 11;60(11):1807-1817.
    PMID: 31484694 DOI: 10.1194/jlr.M092379
    Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, partly due to the lack of targeted therapy available. Cancer cells heavily reprogram their metabolism and acquire metabolic plasticity to satisfy the high-energy demand due to uncontrolled proliferation. Accumulating evidence shows that deregulated lipid metabolism affects cancer cell survival, and therefore we sought to understand the function of fatty acid binding protein 7 (FABP7), which is expressed predominantly in TNBC tissues. As FABP7 was not detected in the TNBC cell lines tested, Hs578T and MDA-MB-231 cells were transduced with lentiviral particles containing either FABP7 open reading frame or red fluorescent protein. During serum starvation, when lipids were significantly reduced, FABP7 decreased the viability of Hs578T, but not of MDA-MB-231, cells. FABP7-overexpressing Hs578T (Hs-FABP7) cells failed to efficiently utilize other available bioenergetic substrates such as glucose to sustain ATP production, which led to S/G2 phase arrest and cell death. We further showed that this metabolic phenotype was mediated by PPAR-α signaling, despite the lack of fatty acids in culture media, as Hs-FABP7 cells attempted to survive. This study provides imperative evidence of metabolic vulnerabilities driven by FABP7 via PPAR-α signaling.
    Matched MeSH terms: Triple Negative Breast Neoplasms/metabolism*; Triple Negative Breast Neoplasms/pathology
  19. Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:645-658.
    PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010
    The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms
  20. Islam R, Lam KW
    Eur J Med Chem, 2020 Dec 01;207:112812.
    PMID: 32937283 DOI: 10.1016/j.ejmech.2020.112812
    Triple-negative breast cancer (TNBC) is the most aggressive type of cancer, with a high risk of death on recurrence. To date, there is a lack of approved targeted agents for the treatment of the disease. Patients with TNBC continue to depend on surgery, chemotherapy, and radiotherapy, all of which have a wide side effect profile. In the present review, we highlight the current progress and exciting developments in the small-molecule targeted therapy for the treatment of TNBC. Finally, we also discuss the prospect of combining targeted therapy and immunotherapy for the effective treatment of TNBC.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy*; Triple Negative Breast Neoplasms/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links