Displaying publications 1 - 20 of 194 in total

Abstract:
Sort:
  1. Hussein Aliu Sule, Ahmad Ismail, Mohammad Noor Azmai Amal, Syaizwan Zahmir Zulkifli, Mohd Fauzul Aidil Mohd Roseli, Shamarina Shohaimi
    Sains Malaysiana, 2018;47:2589-2600.
    Tropical peat swamp forest (PSF) is one of the most endangered ecosystems in the world. However, the impacts of
    anthropogenic activities in PSF and its conversion area towards fish biodiversity are less understood. This study
    investigates the influences of water physico-chemical parameters on fish occurrences in peat swamp, paddy field and
    oil palm plantation in the North Selangor peat swamp forest (NSPSF), Selangor, Malaysia. Fish and water samples were
    collected from four sites located in the peat swamps, while two sites were located in the paddy field and oil palm plantation
    areas. Multivariate analyses were used to determine the associations between water qualities and fish occurrences in
    the three habitats. A total of 1,382 individual fish, belonging to 10 families, 15 genera and 20 species were collected.
    The family Cyprinidae had the highest representatives, followed by Bagridae and Osphronemidae. The most abundant
    species was Barbonymus schwanefeldii (Bleeker 1854), while the least abundant was Wallago leerii Bleeker, 1851. The
    paddy field and oil palm plantation area recorded significantly higher fish diversity and richness relative to peat swamp
    (p<0.05). The water physico-chemical parameters, such as pH, DO, NH3
    -N, PO4, SO4
    , and Cl2 showed no significant
    difference between paddy field and oil palm plantation (p>0.05), but was significantly different from the peat swamp
    (p<0.05). However, no water quality parameter was consistently observed to be associated with fish occurrences in all
    of the three habitats, but water temperature, NH3
    -N, Cl2, SO4
    , and EC were at least associated with fish occurrences in
    two habitats studied. This study confirmed that each habitat possess different water quality parameters associated with
    fish occurrences. Understanding all these ecological aspects could help future management and conservation of NSPSF.
    Matched MeSH terms: Wetlands
  2. Ayub KR, Zakaria NA, Abdullah R, Ramli R
    Water Sci Technol, 2010;62(8):1931-6.
    PMID: 20962410 DOI: 10.2166/wst.2010.473
    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.
    Matched MeSH terms: Wetlands*
  3. Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, et al.
    J Hazard Mater, 2021 07 05;413:125426.
    PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426
    This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P 
    Matched MeSH terms: Wetlands*
  4. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2018 Oct;266:97-108.
    PMID: 29957296 DOI: 10.1016/j.biortech.2018.06.035
    This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
    Matched MeSH terms: Wetlands*
  5. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
    Matched MeSH terms: Wetlands
  6. Roucoux KH, Lawson IT, Baker TR, Del Castillo Torres D, Draper FC, Lähteenoja O, et al.
    Conserv Biol, 2017 12;31(6):1283-1292.
    PMID: 28272753 DOI: 10.1111/cobi.12925
    Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.
    Matched MeSH terms: Wetlands*
  7. Marshall DJ, Rezende EL, Baharuddin N, Choi F, Helmuth B
    Ecol Evol, 2015 12;5(24):5905-19.
    PMID: 26811764 DOI: 10.1002/ece3.1785
    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.
    Matched MeSH terms: Wetlands
  8. IRVINE K, VERMETTE S, FIRUZA BEGHAM MUSTAFA
    Sains Malaysiana, 2013;42:1539-1548.
    Longitudinal water quality trends were assessed in the Tengi River system, Selangor, Malaysia, as the water moved from a peat swamp forest, through different agricultural land uses and finally through a town and then to the Straits of Malacca. Water draining from the peat swamp forest was dark in color due to its organic content and low in dissolved oxygen, pH, E. coli, calcium, nitrate and ammonia. The normal diurnal pattern for water temperature was observed for the peat swamp forest drainage, but there was no clear diurnal pattern evident in the dissolved oxygen data. The E. coli levels increased monotonically from the peat swamp forest waters (0 colonies/100 mL) through the agricultural areas (100-2000 colonies/100 mL) and town (7100 colonies/100 mL) and similarly pH increased along the same continuum. Dissolved oxygen increased from the peat swamp forest through the agricultural areas, but was lower in the town-impacted reach of the Tengi River.
    Matched MeSH terms: Wetlands
  9. Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, Crooks S, et al.
    Science, 2019 01 18;363(6424):239.
    PMID: 30655434 DOI: 10.1126/science.aaw0809
    Matched MeSH terms: Wetlands*
  10. Jong VS, Tang FE
    Water Sci Technol, 2015;72(1):84-91.
    PMID: 26114275 DOI: 10.2166/wst.2015.186
    In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.
    Matched MeSH terms: Wetlands
  11. Grismer LL, Muin MA, Wood PL, Anuar S, Linkem CW
    Zootaxa, 2016 Mar 15;4092(2):231-42.
    PMID: 27394452 DOI: 10.11646/zootaxa.4092.2.6
    Phylogenetic analyses based on the mitochondrial gene ND2 and its flanking tRNAs indicate the diminutive upland and insular species Sphenomorphus bukitensis, S. butleri, S. langkawiensis, S. perhentianensis, and S. temengorensis form a monophyletic group that is phylogenetically embedded within the Southeast Asian genus Tytthoscincus. The analyses also indicate that a new swamp-dwelling skink from the Bukit Panchor State Park, Pulau Pinang, Peninsular Malaysia is the sister species to the swamp-dwelling species S. sibuensis from Pulau Sibu, Johor and Singapore and that these two are also embedded in the genus Tytthoscincus. By transferring the two Peninsular Malaysian clades of Sphenomorphus into the genus Tytthoscincus, the monophyly of the latter is maintained. The new species T. panchorensis sp. nov. can be distinguished from all other species of Tytthoscincus by having a unique combination of morphological and color pattern characteristics.
    Matched MeSH terms: Wetlands
  12. Lin CY, Turchyn AV, Krylov A, Antler G
    Geobiology, 2020 03;18(2):207-224.
    PMID: 31814266 DOI: 10.1111/gbi.12371
    We employ complementary field and laboratory-based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid-phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present.
    Matched MeSH terms: Wetlands*
  13. Tang ACI, Stoy PC, Hirata R, Musin KK, Aeries EB, Wenceslaus J, et al.
    Sci Total Environ, 2019 Sep 15;683:166-174.
    PMID: 31132697 DOI: 10.1016/j.scitotenv.2019.05.217
    Tropical rainforests control the exchange of water and energy between the land surface and the atmosphere near the equator and thus play an important role in the global climate system. Measurements of latent (LE) and sensible heat exchange (H) have not been synthesized across global tropical rainforests to date, which can help place observations from individual tropical forests in a global context. We measured LE and H for four years in a tropical peat forest ecosystem in Sarawak, Malaysian Borneo using eddy covariance, and hypothesize that the study ecosystem will exhibit less seasonal variability in turbulent fluxes than other tropical ecosystems as soil water is not expected to be limiting in a tropical forested wetland. LE and H show little variability across seasons in the study ecosystem, with LE values on the order of 11 MJ m-2 day and H on the order of 3 MJ m-2 day-1. Annual evapotranspiration (ET) did not differ among years and averaged 1579 ± 47 mm year-1. LE exceeded characteristic values from other tropical rainforest ecosystems in the FLUXNET2015 database with the exception of GF-Guy near coastal French Guyana, which averaged 8-11 MJ m-2 day-1. The Bowen ratio (Bo) in tropical rainforests in the FLUXNET2015 database either exhibited little seasonal trend, one seasonal peak, or two peaks. Volumetric water content (VWC) and VPD explained a trivial amount of the variability of LE and Bo in some of the tropical rainforests including the study ecosystem, but were strong controls in others, suggesting differences in stomatal regulation and/or the partitioning between evaporation and transpiration. Results demonstrate important differences in the seasonal patterns in water and energy exchange across different tropical rainforest ecosystems that need to be understood to quantify how ongoing changes in tropical rainforest extent will impact the global climate system.
    Matched MeSH terms: Wetlands
  14. Kannan A, Rama Rao S, Ratnayeke S, Yow YY
    PeerJ, 2020;8:e8755.
    PMID: 32274263 DOI: 10.7717/peerj.8755
    Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06-6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
    Matched MeSH terms: Wetlands
  15. Ruwaimana M, Satyanarayana B, Otero V, M Muslim A, Syafiq A M, Ibrahim S, et al.
    PLoS One, 2018;13(7):e0200288.
    PMID: 30020959 DOI: 10.1371/journal.pone.0200288
    Satellite data and aerial photos have proved to be useful in efficient conservation and management of mangrove ecosystems. However, there have been only very few attempts to demonstrate the ability of drone images, and none so far to observe vegetation (species-level) mapping. The present study compares the utility of drone images (DJI-Phantom-2 with SJ4000 RGB and IR cameras, spatial resolution: 5cm) and satellite images (Pleiades-1B, spatial resolution: 50cm) for mangrove mapping-specifically in terms of image quality, efficiency and classification accuracy, at the Setiu Wetland in Malaysia. Both object- and pixel-based classification approaches were tested (QGIS v.2.12.3 with Orfeo Toolbox). The object-based classification (using a manual rule-set algorithm) of drone imagery with dominant land-cover features (i.e. water, land, Avicennia alba, Nypa fruticans, Rhizophora apiculata and Casuarina equisetifolia) provided the highest accuracy (overall accuracy (OA): 94.0±0.5% and specific producer accuracy (SPA): 97.0±9.3%) as compared to the Pleiades imagery (OA: 72.2±2.7% and SPA: 51.9±22.7%). In addition, the pixel-based classification (using a maximum likelihood algorithm) of drone imagery provided better accuracy (OA: 90.0±1.9% and SPA: 87.2±5.1%) compared to the Pleiades (OA: 82.8±3.5% and SPA: 80.4±14.3%). Nevertheless, the drone provided higher temporal resolution images, even on cloudy days, an exceptional benefit when working in a humid tropical climate. In terms of the user-costs, drone costs are much higher, but this becomes advantageous over satellite data for long-term monitoring of a small area. Due to the large data size of the drone imagery, its processing time was about ten times greater than that of the satellite image, and varied according to the various image processing techniques employed (in pixel-based classification, drone >50 hours, Pleiades <5 hours), constituting the main disadvantage of UAV remote sensing. However, the mangrove mapping based on the drone aerial photos provided unprecedented results for Setiu, and was proven to be a viable alternative to satellite-based monitoring/management of these ecosystems. The improvements of drone technology will help to make drone use even more competitive in the future.
    Matched MeSH terms: Wetlands*
  16. Chong HL, Chia PS, Ahmad MN
    Bioresour Technol, 2013 Feb;130:181-6.
    PMID: 23306127 DOI: 10.1016/j.biortech.2012.11.136
    Oil palm shell, a waste from palm oil industry, was cleaned and utilized as adsorbent. Its particle size distribution gave the uniformity coefficient of approximately two indicating that it can be used as filter bed media for continuous operation without resting. Its measured pH(pzc) of 4.1 is below the common pH of constructed wetland water body suggesting positive adsorption for heavy metal. The effect of various parameters on its adsorption was studied via batch experiments. The adsorption of Cu(II) and Pb(II) ions by oil palm shell showed a slightly better fit with the Freundlich compared to Langmuir. Its monolayer adsorption capacities were found to be 1.756 and 3.390mg/g for Cu(II) and Pb(II), respectively. High correlation coefficient of over 0.99 given by the pseudo-second-order model suggests that the rate limiting factor may be chemisorption. These findings suggest its potential application as constructed wetland media for the removal of heavy metal.
    Matched MeSH terms: Wetlands*
  17. Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, et al.
    Bioresour Technol, 2016 Mar;203:190-7.
    PMID: 26724550 DOI: 10.1016/j.biortech.2015.12.011
    This study demonstrated a successful operation of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) in wastewater treatment and energy recovery. The goals of this study were to investigate the effect of circuit connection, organic loading rates, and electrode spacing on the performance of wastewater treatment and bioelectricity generation. The average influent of COD, NO3(-) and NH4(+) were 624 mg/L, 142 mg/L, 40 mg/L, respectively and their removal efficiencies (1 day HRT) were 99%, 46%, and 96%, respectively. NO3(-) removal was relatively higher in the closed circuit system due to lower dissolved oxygen in the system. Despite larger electrode spacing, the voltage outputs from Anode 2 (A2) (30 cm) and Anode 3 (A3) (45 cm) were higher than from Anode 1 (A1) (15 cm) as a result of insufficient fuel supply to A1. The maximum power density and Coulombic efficiency were obtained at A2, which were 93 mW/m(3) and 1.42%, respectively.
    Matched MeSH terms: Wetlands
  18. Jackson CR, Liew KC, Yule CM
    Microb Ecol, 2009 Apr;57(3):402-12.
    PMID: 18548182 DOI: 10.1007/s00248-008-9409-4
    Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27-54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.
    Matched MeSH terms: Wetlands
  19. Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH
    Sci Rep, 2016 Apr 13;6:24247.
    PMID: 27072394 DOI: 10.1038/srep24247
    Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136(T) (=DSM 100712(T) = MCCC 1K01246(T)) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063(T) (99.6%) along with two other strains (>98.9% sequence similarities). The DNA-DNA relatedness between MUSC 136(T) and these type strains ranged from 22.7 ± 0.5% to 46.5 ± 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136(T) exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites.
    Matched MeSH terms: Wetlands
  20. Ser HL, Zainal N, Palanisamy UD, Goh BH, Yin WF, Chan KG, et al.
    Antonie Van Leeuwenhoek, 2015 Jun;107(6):1369-78.
    PMID: 25863667 DOI: 10.1007/s10482-015-0431-5
    A novel Streptomyces, strain MUSC 26(T), was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The bacterium was observed to be Gram-positive and to form grayish yellow aerial and substrate mycelium on ISP 7 agar. A polyphasic approach was used to study the taxonomy of strain MUSC 26(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The cell wall peptidoglycan was determined to contain LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9 (H8) and MK-9(H6). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylmethylethanolamine and hydroxyphosphatidylmethylethanolamine. The predominant cellular fatty acids (>10.0 %) were identified as anteiso-C15:0 (31.4 %), iso-C16:0 (16.3 %), iso-C15:0 (13.9 %) and anteiso-C17:0 (12.6 %). The cell wall sugars were found to be galactose, glucose, mannose, ribose and rhamnose. These results suggest that MUSC 26(T) should be placed within the genus Streptomyces. Phylogenetic analysis indicated that closely related strains include Streptomyces qinglanensis 172205(T) (96.5 % sequence similarity), S. sodiiphilus YIM 80305(T) (96.5 %) and S. rimosus subsp. rimosus ATCC 10970(T) (96.4 %). DNA-DNA relatedness values between MUSC 26(T) and closely related type strains ranged from 17.0 ± 2.2 to 33.2 ± 5.3 %. Comparison of BOX-PCR fingerprints indicated MUSC 26(T) presents a unique DNA profile. The DNA G+C content was determined to be 74.6 mol%. Based on this polyphasic study of MUSC 26(T), it is concluded that this strain represents a novel species, for which the name Streptomyces gilvigriseus sp. nov. is proposed. The type strain is MUSC 26(T) (=DSMZ 42173(T) = MCCC 1K00504(T)).
    Matched MeSH terms: Wetlands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links