Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Abd Elgadir M, Akanda MJ, Ferdosh S, Mehrnoush A, Karim AA, Noda T, et al.
    Molecules, 2012 Jan 09;17(1):584-97.
    PMID: 22231495 DOI: 10.3390/molecules17010584
    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.
    Matched MeSH terms: Whey Proteins
  2. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    J Food Sci, 2021 Dec;86(12):5282-5294.
    PMID: 34796499 DOI: 10.1111/1750-3841.15974
    Poor solubility is a substantial factor that restricts the production of high value-added lentil proteins (LPs). In this study, whey protein isolates (WPIs), which have high solubility and are used in various food industries, were mixed with LPs at pH 12 to create LP-WPI protein complexes with improved water solubility properties using pH-recycling approach (maintained at pH 12.0 for 60 min and then readjusting to pH 7.0). LP-WPI protein complexes produced in this study have gained high surface charge, increased in the solubilization of protein complexes to ≈92%, as well as improved resistance against protein aggregation. The ratio of LPs to WPIs has a significant effect on the generation of unique tertiary and secondary protein structures based on the protein-protein interaction (PPI) technique via pH-recycling. The protein interaction between LPs and WPIs resulted in alteration on the surface morphology of the produced protein complexes. This study showed that electrostatic interaction, hydrophobic force, and hydrogen bond appear as major molecular forces in this PPI. The efficacy of the pH-recycling method used in this research indicates that this approach could be a robust approach to enhance the functional properties of food proteins. PRACTICAL APPLICATION: The pH-recycling technique is a proven technique for protein complexation in creating novel protein complexes with improved functional properties. Even though lentils are a rich source of plant-based protein, its utilization by food industries is restricted due to the poor water solubility of lentil proteins (LPs). However, by using complexing lentil proteins with whey protein isolates (WPIs), that is, LP-WPI protein complex, was developed. The water solubility of LP-WPI protein complex was significantly higher than LPs, up to approximately 92%. In addition, this could improve the utilization of lentil seeds in food application as an alternative for animal-based proteins.
    Matched MeSH terms: Whey Proteins
  3. Amid BT, Mirhosseini H, Poorazarang H, Mortazavi SA
    Molecules, 2013 Dec 06;18(12):15110-25.
    PMID: 24322494 DOI: 10.3390/molecules181215110
    This paper deals with the conjugation of durian seed gum (DSG) with whey protein isolate (WPI) through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample) and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin). The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05) improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC) as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.
    Matched MeSH terms: Whey Proteins
  4. Ashraf A, Mudgil P, Palakkott A, Iratni R, Gan CY, Maqsood S, et al.
    J Dairy Sci, 2021 Jan;104(1):61-77.
    PMID: 33162074 DOI: 10.3168/jds.2020-18627
    The molecular basis of the anti-diabetic properties of camel milk reported in many studies and the exact active agent are still elusive. Recent studies have reported effects of camel whey proteins (CWP) and their hydrolysates (CWPH) on the activities of dipeptidyl peptidase IV (DPP-IV) and the human insulin receptor (hIR). In this study, CWPH were generated, screened for DPP-IV binding in silico and inhibitory activity in vitro, and processed for peptide identification. Furthermore, pharmacological action of intact CWP and their selected hydrolysates on hIR activity and signaling and on glucose uptake were investigated in cell lines. Results showed inhibition of DPP-IV by CWP and CWPH and their positive action on hIR activation and glucose uptake. Interestingly, the combination of CWP or CWPH with insulin revealed a positive allosteric modulation of hIR that was drastically reduced by the competitive hIR antagonist. Our data reveal for the first time the profiling and pharmacological actions of CWP and their derived peptides fractions on hIR and their pathways involved in glucose homeostasis. This sheds more light on the anti-diabetic properties of camel milk by providing the molecular basis for the potential use of camel milk in the management of diabetes.
    Matched MeSH terms: Whey Proteins/metabolism
  5. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan CY, Maqsood S
    J Dairy Sci, 2021 Feb;104(2):1364-1377.
    PMID: 33309363 DOI: 10.3168/jds.2020-19271
    This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.
    Matched MeSH terms: Whey Proteins/chemistry*
  6. Baba WN, Mudgil P, Baby B, Vijayan R, Gan CY, Maqsood S
    J Dairy Sci, 2021 Jul;104(7):7393-7405.
    PMID: 33934858 DOI: 10.3168/jds.2020-19868
    Novel antihypercholesterolemic bioactive peptides (BAP) from peptic camel whey protein hydrolysates (CWPH) were generated at different time, temperature, and enzyme concentration (%). Hydrolysates showed higher pancreatic lipase- (PL; except 3 CWPH) and cholesterol esterase (CE)-inhibiting potential, as depicted by lower half-maximal inhibitory concentration values (IC50 values) compared with nonhydrolyzed camel whey proteins (CWP). Peptide sequencing and in silico data depicted that most BAP from CWPH could bind active site of PL, whereas as only 3 peptides could bind the active site of CE. Based on higher number of reactive residues in the BAP and greater number of substrate binding sites, FCCLGPVPP was identified as a potential CE-inhibitory peptide, and PAGNFLPPVAAAPVM, MLPLMLPFTMGY, and LRFPL were identified as PL inhibitors. Molecular docking of selected peptides showed hydrophilic and hydrophobic interactions between peptides and target enzymes. Thus, peptides derived from CWPH warrant further investigation as potential candidates for adjunct therapy for hypercholesterolemia.
    Matched MeSH terms: Whey Proteins
  7. Bhanegaonkar AJ, Horodniceanu EG, Abdul Latiff AH, Woodhull S, Khoo PC, Detzel P, et al.
    Asia Pac Allergy, 2015 Apr;5(2):84-97.
    PMID: 25938073 DOI: 10.5415/apallergy.2015.5.2.84
    BACKGROUND: Breastfeeding is best for infants and the World Health Organization recommends exclusive breastfeeding for at least the first 6 months of life. For those who are unable to be breastfed, previous studies demonstrate that feeding high-risk infants with hydrolyzed formulas instead of cow's milk formula (CMF) may decrease the risk of atopic dermatitis (AD).

    OBJECTIVE: To estimate the economic impact of feeding high-risk, not exclusively breastfed, urban Malaysian infants with partiallyhydrolyzed whey-based formula (PHF-W) instead of CMF for the first 17 weeks of life as an AD risk reduction strategy.

    METHODS: A cohort Markov model simulated the AD incidence and burden from birth to age 6 years in the target population fed with PHF-W vs. CMF. The model integrated published clinical and epidemiologic data, local cost data, and expert opinion. Modeled outcomes included AD-risk reduction, time spent post AD diagnosis, days without AD flare, quality-adjusted life years (QALYs), and costs (direct and indirect). Outcomes were discounted at 3% per year. Costs are expressed in Malaysian Ringgit (MYR; MYR 1,000 = United States dollar [US $]316.50).

    RESULTS: Feeding a high-risk infant PHF-W vs. CMF resulted in a 14% point reduction in AD risk (95% confidence interval [CI], 3%-23%), a 0.69-year (95% CI, 0.25-1.10) reduction in time spent post-AD diagnosis, additional 38 (95% CI, 2-94) days without AD flare, and an undiscounted gain of 0.041 (95% CI, 0.007-0.103) QALYs. The discounted AD-related 6-year cost estimates when feeding a high-risk infant with PHF-W were MYR 1,758 (US $556) (95% CI, MYR 917-3,033) and with CMF MYR 2,871 (US $909) (95% CI, MYR 1,697-4,278), resulting in a per-child net saving of MYR 1,113 (US $352) (95% CI, MYR 317-1,884) favoring PHF-W.

    CONCLUSION: Using PHF-W instead of CMF in this population is expected to result in AD-related costs savings.

    Matched MeSH terms: Whey Proteins
  8. Botteman M, Detzel P
    Ann Nutr Metab, 2015;66 Suppl 1:26-32.
    PMID: 25925338 DOI: 10.1159/000370222
    BACKGROUND: Atopic dermatitis (AD) is one of the most common skin conditions among infants. Proteins found in cow's milk formula (CMF) have been found to be attributable to heightened AD risk, particularly in infants with familial AD heredity. Previous studies have suggested that intervention with partially hydrolyzed formula in nonexclusively breastfed infants can have a protective effect against AD development.

    OBJECTIVE: The aim of the present study was to compare the estimates of the economic impact of reducing the AD incidence by feeding a partially hydrolyzed whey-based formula (PHF-W) instead of a standard CMF to high-risk nonexclusively breastfed urban infants for the first 17 weeks of life in the Philippines, Malaysia, and Singapore.

    METHODS: In each country, a mathematical model simulated AD incidence and burden from birth to 6 years of age of using PHF-W versus CMF in the target population using data from the German Infant Nutritional Intervention study. The models integrated literature, current cost and market data, and expert clinician opinion. Modeled outcomes included AD risk reduction, time spent after AD diagnosis, AD symptom-free days, quality-adjusted life years (QALYs), and costs (direct and indirect). Outcomes were discounted at 3% per year. Costs were expressed in USD.

    RESULTS: Feeding high-risk infants PHF-W instead of CMF resulted in an estimated absolute 14% (95% CI 1-24) AD risk reduction, a 0.69-year (95% CI 0.25-1.13) reduction in the time spent after AD diagnosis per child, reductions of 16-38 AD days, and gains in 0.02-0.04 QALYs, depending on the country. The per-child AD-related 6-year cost-saving estimates of feeding high-risk infants with PHF-W versus CMF were USD 739 in Singapore, USD 372 in Malaysia, and USD 237 in the Philippines.

    Matched MeSH terms: Whey Proteins/chemistry*
  9. Cheah KJ, Cheah LJ
    Nutr J, 2023 Oct 23;22(1):52.
    PMID: 37872544 DOI: 10.1186/s12937-023-00880-7
    BACKGROUND: Protein supplements have been widely used among those who are struggling with sarcopenic obesity among older adults. However, despite their popularity, there is still a lack of concrete evidence on both the potential benefits and side effects of protein supplementation and exercise on sarcopenic obesity (SO).

    OBJECTIVE: Thus, we aimed to determine the impacts of protein supplementation and exercise in older adults with sarcopenic obesity.

    METHOD: A systematic database search was conducted for randomised controlled trials, quasi experimental study and pre-post study design addressing the effects of protein supplementation in improving sarcopenic obesity among older adults. This scoping review was conducted based on PRISMA-Scr guidelines across PubMed, Embase, Web of Science and Cochrane Library databases. To assess record eligibility, two independent reviewers performed a rigorous systematic screening process.

    RESULTS: Of the 1,811 citations identified, 7 papers met the inclusion criteria. Six studies were randomised controlled trials and one study was a pre-post test study design. The majority of studies discussed the use of both protein supplements and exercise training. The included studies prescribed protein intake ranging from 1.0 to 1.8 g/kg/BW/day for the intervention group, while the duration of exercise performed ranged from 2 to 3 times per week, with each session lasting for 1 hour. Whey protein supplementation has been shown to be effective in improving sarcopenic conditions and weight status in SO individuals. The combination of exercise training especially resistance training and the used of protein supplement provided additional benefits in terms of lean muscle mass as well as biomarkers. The study also revealed a lack of consistency in exercise design among interventions for sarcopenic obesity.

    CONCLUSION: Overall, it appears to be a promising option for SO individuals to improve their sarcopenic condition and weight status through the combination of resistance exercise and whey protein supplementation. However, it also highlights the need for caution when it comes to high amounts of protein intake prescription. Future research is warranted to investigate the optimal exercise design for this population, given the limited research conducted in this specific area.

    Matched MeSH terms: Whey Proteins/therapeutic use
  10. Chen Y, Ge H, Zheng Y, Zhang H, Li Y, Su X, et al.
    J Agric Food Chem, 2020 Jun 03;68(22):6190-6201.
    PMID: 32379465 DOI: 10.1021/acs.jafc.0c01250
    The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
    Matched MeSH terms: Whey Proteins/metabolism; Whey Proteins/chemistry*
  11. Dong L, Zhang Y, Li Y, Liu Y, Chen Q, Liu L, et al.
    Food Funct, 2023 Nov 13;14(22):10221-10231.
    PMID: 37916290 DOI: 10.1039/d3fo02474a
    Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.
    Matched MeSH terms: Whey Proteins/analysis
  12. Ho CY, Ibrahim Z, Abu Zaid Z, Mat Daud Z', Md Yusop NB
    Trials, 2020 Jun 16;21(1):533.
    PMID: 32546217 DOI: 10.1186/s13063-020-04462-4
    INTRODUCTION: There has been growing evidence on the favourable outcomes of fast-track-recovery (FTR) surgery; to expedite recovery, minimise complications, and reduce the length of hospital stay for surgical patients. However, there is lack of evidence on the effectiveness of FTR in surgical gynaecological cancer (GC) patients. Most of the previous studies did not focus on feeding composition in the FTR surgery protocol. This study aims to determine the effectiveness of FTR feeding with a whey-protein-infused carbohydrate-loading drink pre-operatively and early oral feeding post-operatively on post-operative outcomes among surgical GC patients.

    METHODS/DESIGN: This open-labelled, randomised controlled trial (RCT) will randomly allocate patients into intervention and control groups. Ambulated Malaysian aged over 18 years and scheduled for elective surgery for (suspected) GC, will be included in this study. The intervention group will be given whey-protein-infused carbohydrate-loading drinks on the evening before their operation and 3 h before their operation as well as started on early oral feeding 4 h post-operatively. The control group will be fasted overnight pre-operation and only allowed plain water, and return to a normal diet is allowed when bowel sounds return post-operatively. The primary outcomes of study are length of post-operative hospital stay, length of clear-fluid tolerance, solid-food tolerance and bowel function. Additional outcome measures are changes in nutritional status, biochemical profile and functional status. Data will be analysed on an intention-to-treat basis.

    TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03667755. Retrospectively registered on 12 September 2018; Protocol version: version 3 dated 27 September 2017.

    Matched MeSH terms: Whey Proteins/administration & dosage*; Whey Proteins/adverse effects
  13. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
    Matched MeSH terms: Whey Proteins/pharmacology*; Whey Proteins/toxicity; Whey Proteins/chemistry
  14. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
    Matched MeSH terms: Whey Proteins/administration & dosage*; Whey Proteins/pharmacokinetics; Whey Proteins/chemistry
  15. Lam FC, Bukhsh A, Rehman H, Waqas MK, Shahid N, Khaliel AM, et al.
    Front Pharmacol, 2019;10:317.
    PMID: 31068804 DOI: 10.3389/fphar.2019.00317
    Introduction: Athletes train physically to reach beyond their potential maximum aerobic threshold. Whey protein supplements (WPS) are often used in conjunction with physiotherapy and psychotherapy to regain better vital sign and physical performances. This review aimed to explore the clinical evidence on the efficacy and safety of WPS in sports performance and recovery among athletes. Methodology: A comprehensive literature search was performed to identify relevant randomized control trials (RCTs) that investigated the efficacy and safety of WPS on the vital sign and physical performance among athletes. The Cochrane Risk of Bias (ROB) Assessment tools were used to assess the quality of the studies. Meta-analysis was conducted using the frequentist model with STATA version 14.2®. Results: A total of 333,257 research articles were identified out of which 20 RCTs were included for qualitative synthesis and network meta-analysis with 351 participants. Among the studies, 7 had low ROB and 3 RCTs had high ROB. Of these 20 trials, 16 trials were randomized clinical trials which compared whey protein supplements (WPS) with various comparators i.e., L-alanine, bovine colostrum, carbohydrate, casein, leucine, maltodextrin, rice, protein + caffeine were compared with placebo. Analysis from the pairwise meta-analysis revealed that for respiratory exchange ratio (RER) WPS was found to be significantly improving compared to maltodextrin (WMD = 0.012; 95%CI = 0.001, 0.023). Similarity to RPE (Rate Perceived Exertion), slight difference between WPS and the comparators, however, when the estimation was favorable to the comparators, there was moderate-high heterogeneity. For VO2max, high heterogeneity appeared when WPS compared to maltodextrin with the I2 = 97.8% (WMD = 4.064; 95% CI = -4.230, 12.359), meanwhile bovine colostrum (WMD = -2.658; 95%CI = -6.180, 0.865) only comparator that was better than WPS. According to the estimated effect of the supplements on physical performance outcome results, maximum power (8 studies, 185 athletes), highest ranked was bovine colostrum (SUCRA = 70.7%) and the lowest ranked was placebo (SUCRA = 17.9%), yet all insignificant. Then again, on average power (nine studies, 187 athletes), WPS was the highest ranked (SUCRA = 75.4 %) about -112.00 watt (-187.91, -36.08) and most of the estimations were significant. Body mass was reported in 10 studies (171 athletes), carbohydrate may be at the highest ranked (SUCRA = 66.9%) but it is insignificant. Thought the second highest ranked was WPS (SUCRA = 64.7%) and it is significant (WMD = -6.89 kg; CI = -8.24, -5.54). Conclusion: The findings of this review support the efficacy and safety of WPS as an ergogenic aid on athletes' sports performance and recovery. The overall quality of clinical evidence was found to be valid and reliable from the comprehensive search strategy and ROB assessment.
    Matched MeSH terms: Whey Proteins
  16. Lam FC, Khan TM, Faidah H, Haseeb A, Khan AH
    Syst Rev, 2019 05 31;8(1):130.
    PMID: 31151484 DOI: 10.1186/s13643-019-1039-z
    BACKGROUND: Consuming whey protein supplements, along with physiotherapy and psychotherapy, have been recognised in sports performance. Whey protein supplements (WPS) is one of the commonly used supplements as ergogenic aids for athletes to enhance their muscle performance and recovery during sport-related injuries. The purpose of this systematic review is to investigate the effectiveness of WPS over the blood biochemistry mainly amino acids, creatinine kinase and myoglobin which influence performance and recovery among athletes.

    METHOD: A comprehensive literature search was conducted to identify randomised control trials (RCTs) and non-RCTs that investigated the effectiveness of WPS on amino acids, creatinine kinase and myoglobin among athletes. Risk of Bias in Non-Randomised Studies of Interventions tool (ROBINS-I) and Cochrane Risk of Bias Assessment tool were used to rule out the quality of studies. Meta-analysis was performed using a random effect model with STATA version 14.2. The weighted mean difference was used to estimate the effectiveness of WPS against other supplements.

    RESULTS: A total of 333,257 research articles were identified; of these, 15 records were included to proceed with the analysis. Meta-analysis has shown that WPS has significantly overall increased the level of essential amino acids level by 624.03 nmol/L (CI = 169.27, 1078.8; I2 = 100%; p = 0.00) and branched-chain amino acids level by 458.57 nmol/L (CI = 179.96, 737.18; I2 = 100%; p = 0.00) compared to the control group (without WPS). Moreover, was observed to decrease myoglobin level by 11.74 ng/ml (CI = - 30.24, 6.76; I2 = 79.6%; p = 0.007) and creatine kinase level by 47.05 U/L (CI = - 129.47, 35.37; I2 = 98.4%; p = 0.000) compared to the control group.

    CONCLUSION: The findings revealed that the clinical evidence supports the effectiveness of WPS as a positive ergogenic aid on athletes' amino acids, creatinine kinase and myoglobin.

    Matched MeSH terms: Whey Proteins/pharmacology*
  17. Lee PE, Choo WS
    J Food Sci Technol, 2015 Jul;52(7):4378-86.
    PMID: 26139903 DOI: 10.1007/s13197-014-1495-3
    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).
    Matched MeSH terms: Whey Proteins
  18. Lua BC, Md Hashim MN, Wong MS, Lee YY, Zakaria AD, Zakaria Z, et al.
    Sci Rep, 2022 Oct 17;12(1):17355.
    PMID: 36253448 DOI: 10.1038/s41598-022-22363-1
    Clinical benefits and safety of carbohydrate loading pre-gastroscopy remain unclear. We aimed to determine the effects of a commercial carbohydrate-rich whey protein beverage versus plain water given pre-gastroscopy on gastric residual volume and well-being, and to determine adverse events. This was a single centre, single-blinded, parallel-group, sex-stratified randomized controlled trial. Participants were randomized either to carbohydrate-rich whey protein beverage group (Resource®, Nestle Health Science) or control group (250 ml plain water) given pre-gastroscopy. Gastric contents were aspirated into a suction reservoir bottle to determine the gastric residual volume (GRV). Visual analogue scale (VAS) of well-being (anxiety, hunger, thirst, tiredness, and weakness) was compared before and after the intervention. Adverse events were also evaluated post-intervention. Of 369 screened, 78 participants (36 males, mean age 49 ± 14.3 years) were randomized. Compared with the control group, carbohydrate beverage was associated with significantly higher GRV (p 
    Matched MeSH terms: Whey Proteins
  19. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
    Matched MeSH terms: Whey Proteins/metabolism; Whey Proteins/pharmacology*
  20. Md Zain SN, Bennett R, Flint S
    J Food Sci, 2017 Mar;82(3):751-756.
    PMID: 28135405 DOI: 10.1111/1750-3841.13633
    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%.
    Matched MeSH terms: Whey Proteins*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links