Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Dhiyaaldeen SM, Alshawsh MA, Salama SM, Alwajeeh NS, Al Batran R, Ismail S, et al.
    Biomed Res Int, 2014;2014:792086.
    PMID: 24587992 DOI: 10.1155/2014/792086
    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.
    Matched MeSH terms: Wound Healing/drug effects*
  2. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Wound Healing/drug effects*
  3. Albaayit SF, Abba Y, Rasedee A, Abdullah N
    Drug Des Devel Ther, 2015;9:3507-18.
    PMID: 26203223 DOI: 10.2147/DDDT.S84770
    Clausena excavata is a well-known plant used in folkloric medicine for the treatment of different ailments. This study aimed to determine the in vitro cytoxicity of its leaf solvent extracts as well as the in vivo wound healing and antioxidant activities of the methanolic extracts of C. excavata (MECE). HaCaT (keratocyte) and Vero cell lines were used for evaluation of the in vitro cytotoxic effects, while the in vivo wound healing and antioxidant activities were determined in skin wounds inflicted on rats. Twenty adult male Sprague-Dawley rats were divided into five groups of four animals each. Approximately 3.14 cm(2) excisional wound was inflicted on the nape of each rat following anesthesia. The treatment groups received topical application of MECE at 50 mg/mL (MECE-LD [low dose]), 100 mg/mL (MECE-MD [medium dose]), and 200 mg/mL (MECE-HD [high dose]), while the negative control group was treated with gum acacia in normal saline and the positive control group with intrasite gel. Wound contraction was evaluated on days 5, 10, and 15 after wound infliction, and tissue from wound area was collected at day 15 post-wound infliction for antioxidant enzyme evaluation and histopathological analyses. Generally, Vero cells were more resistant to the cytotoxic effects of the solvent extracts as compared with HaCaT cells. Chloroform (CH) and ethyl acetate (EA) extracts of C. excavata were toxic to HaCaT cells at 200 and 400 µg/mL, but the same concentrations showed higher (P<0.05) viability in Vero cells. There was significantly (P<0.01) greater wound contraction at days 10 and 15 post-wound infliction in all the treatment groups than in the control groups. Histopathologically, the MECE-HD-treated wound showed significantly (P<0.05) lesser inflammatory cell proliferation, degeneration, and distribution of granulation tissue than other groups. Similarly, the degree of collagen maturation, angiogenesis, and collagen distribution were significantly (P<0.05) lower in MECE-HD than in other groups. The MECE-HD, MECE-MD, and intrasite treatment groups showed a significantly (P<0.05) higher number of VEGF-positive and TGF-β1-positive cells in the skin wound than the control groups. The activities of superoxide dismutase and catalase were significantly (P<0.01) higher in the MECE-HD and intrasite treatment groups than in the other groups. Lipid peroxidase activity of the treated groups was significantly (P<0.01) lower than that in the control group. The study showed that MECE is a potent wound healing agent through anti-inflammatory and antioxidant effects that enhanced the rate of wound contraction, re-epithelialization, and collagen deposition. The effect of MECE is suggested to be due to its high polyphenolic compound content.
    Matched MeSH terms: Wound Healing/drug effects*
  4. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, et al.
    BMC Cancer, 2017 01 03;17(1):4.
    PMID: 28049506 DOI: 10.1186/s12885-016-3005-7
    BACKGROUND: Colorectal cancer (CRC) is the 3(rd) most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

    METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

    RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

    CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

    Matched MeSH terms: Wound Healing/drug effects
  5. Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS
    Eur Cell Mater, 2011 Mar 15;21:259-71; discussion 270-1.
    PMID: 21409755
    The effects of Glucosamine Sulphate (GS) and Chondroitin Sulphate (CS) on the healing of damaged and repaired articular cartilage were investigated. This study was conducted using 18 New Zealand white rabbits as experimental models. Focal cartilage defects, surgically created in the medial femoral condyle, were either treated by means of autologous chondrocyte implantation (ACI) or left untreated as controls. Rabbits were then divided into groups which received either GS+/-CS or no pharmacotherapy. Three rabbits from each group were sacrificed at 12 and 24 weeks post-surgery. Knees dissected from rabbits were then evaluated using gross quantification of repair tissue, glycosaminoglycan (GAG) assays, immunoassays and histological assessments. It was observed that, in contrast to untreated sites, surfaces of the ACI-repaired sites appeared smooth and continuous with the surrounding native cartilage. Histological examination demonstrated a typical hyaline cartilage structure; with proteoglycans, type II collagen and GAGs being highly expressed in repair areas. The improved regeneration of these repair sites was also noted to be significant over time (6 months vs. 3 months) and in GS and GS+CS groups compared to the untreated (without pharmacotherapy) group. Combination of ACI and pharmacotherapy (with glucosamine sulphate alone/ or with chondroitin sulphate) may prove beneficial for healing of damaged cartilage, particularly in relation to focal cartilage defects.
    Matched MeSH terms: Wound Healing/drug effects
  6. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p wound closure was ~99% without any adverse systemic reactions. Histological analysis qualitatively revealed an enhanced re-epithelialization and collagen deposition. Moreover, results also showed an improved rate of collagen synthesis and angiogenesis in the group treated with the hydrogel film loaded with Simvastatin. Thus, the present study demonstrated that developed film holds great potential for the acceleration of diabetic wound healing by its pro-angiogenic effect, faster re-epithelialization and increased collagen deposition.
    Matched MeSH terms: Wound Healing/drug effects*
  7. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Wound Healing/drug effects*
  8. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Wound Healing/drug effects
  9. Al-Bayaty FH, Abdulla MA, Abu Hassan MI, Ali HM
    Nat Prod Res, 2012;26(5):423-9.
    PMID: 21660840 DOI: 10.1080/14786419.2010.496114
    This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.
    Matched MeSH terms: Wound Healing/drug effects*
  10. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al.
    Drug Des Devel Ther, 2015;9:1401-17.
    PMID: 25834398 DOI: 10.2147/DDDT.S67976
    Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer.
    Matched MeSH terms: Wound Healing/drug effects
  11. Sasidharan S, Nilawatyi R, Xavier R, Latha LY, Amala R
    Molecules, 2010 Apr 30;15(5):3186-99.
    PMID: 20657471 DOI: 10.3390/molecules15053186
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeis guineensis Jacq (Arecaceae) is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant.

    AIM OF THE STUDY: To investigate the effects of E. guineensis leaf on wound healing activity in rats.

    METHODS: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups.

    RESULTS: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count.

    CONCLUSIONS: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

    Matched MeSH terms: Wound Healing/drug effects*
  12. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Wound Healing/drug effects
  13. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
    Matched MeSH terms: Wound Healing/drug effects
  14. Qodriyah HM, Asmadi AY
    Pak J Biol Sci, 2013 Dec 01;16(23):1815-8.
    PMID: 24506055
    The effect of treatment with Radix on ethanol-induced gastric lesions was investigated. The main ingredient of Radix is Eurycoma longifolia. Twenty-four rats of the Sprague-Dawley species were randomly divided into four groups. Three groups were given 0.5 mL 100% ethanol orally. Another group was used as a control and was given only distilled water orally (control). After 6 h all the rats were fed with normal diet. One group that was administered with ethanol was only given distilled water orally (no treatment). Another two groups that were administered with ethanol were treated with oral Radix 0.128 mg g(-1) b.wt. (Radix) and oral ranitidine 21.4 mg kg(-1) b.wt. (Ranitidine), respectively. After one week, all the rats were fasted overnight and sacrificed. The stomach was isolated and examined for the presence and severity of gastric lesions. Measurements for malondialdehyde content and gastric acid concentration were also done. It is found that the ulcer index was lower in the Radix and ranitidine group compared to the no treatment group whereas in the control group there was no lesion. There was no difference in ulcer index between the Radix and ranitidine group. The gastric MDA content was significantly higher in all the groups that were induced with ethanol compared to the control group but no difference between all the ethanol-induced groups. There was no difference in the gastric acid concentration in all groups. Hence it is concluded that Eurycoma longifolia in Radix is as effective as ranitidine in the treatment of ethanol-induced gastric lesions in rats.
    Matched MeSH terms: Wound Healing/drug effects
  15. Shukrimi A, Sulaiman AR, Halim AY, Azril A
    Med J Malaysia, 2008 Mar;63(1):44-6.
    PMID: 18935732 MyJurnal
    Honey dressing has been used to promote wound healing for years but scanty scientific studies did not provide enough evidences to justify it benefits in the treatment of diabetic foot ulcers. We conducted a prospective study to compare the effect of honey dressing for Wagner's grade-II diabetic foot ulcers with controlled dressing group (povidone iodine followed by normal saline). Surgical debridement and appropriate antibiotics were prescribed in all patients. There were 30 patients age between 31 to 65-years-old (mean of 52.1 years). The mean healing time in the standard dressing group was 15.4 days (range 9-36 days) compared to 14.4 days (range 7-26 days) in the honey group (p < 0.005). In conclusion, ulcer healing was not significantly different in both study groups. Honey dressing is a safe alternative dressing for Wagner grade-II diabetic foot ulcers.
    Matched MeSH terms: Wound Healing/drug effects
  16. Laila L, Febriyenti F, Salhimi SM, Baie S
    Int Wound J, 2011 Oct;8(5):484-91.
    PMID: 21722317 DOI: 10.1111/j.1742-481X.2011.00820.x
    Haruan (Channa striatus) is a type of fresh water fish in Malaysia that is known to promote wound healing. Haruan water extract has been formulated in an aerosol system which can produce a film for wound dressing. As topical preparation, Haruan spray needs to be evaluated in terms of the possibility to cause irritation reaction or toxic response. Three experiments were carried out to evaluate the safety of Haruan spray which are Primary Skin Irritation test, Intracutaneous test and Systemic Injection test. The result shows that Haruan spray gave no significant responses to all the above tests. The investigation of the effect of Haruan spray as wound dressing in the healing process was performed in Sprague-Dawley rats where 6-cm long full-thickness incision wound and burn wound were made on the back of the animals. Haruan spray was tested and compared with blank formula as control. Tensile strength test of treated wound was carried out at the 3rd, 6th, 9th and 12th day after wounding and treatment. The burn wounds contraction was measured daily for 21 days. Results showed that haruan water extract spray formula is not only effective but also safe for application to both incision and burn wounds.
    Matched MeSH terms: Wound Healing/drug effects*
  17. Low JS, Mak KK, Zhang S, Pichika MR, Marappan P, Mohandas K, et al.
    Fitoterapia, 2021 Oct;154:105026.
    PMID: 34480992 DOI: 10.1016/j.fitote.2021.105026
    Wounds still pose a huge burden on human health and healthcare systems in many parts of the world. Phytomedicines are being used to heal the wounds since ancient times. Now-a-days also many researchers are exploring the wound healing activity of phytomedicines. Wound healing is a complex process thus, it is always a question mark regarding the best test model (in vivo, ex vivo and in vitro) model to assess the wound healing activity of phytomedicines. In general, the researchers would opt for in vivo model - probably because of closer physiological relevance to human wounds. However, in vivo experimental models are not suitable for high throughput screening and not ethical in terms of initial screening of the phytomedicines. The in vivo models are associated with difficulties in obtaining the ethical approvals, requires huge budget, and resources. We argue that judicious selection of cell types would serve the purpose of developing a physiologically relevant in vitro experimental model. A lot of progress has been made in molecular biology techniques to bridge the gap between in vitro models and their physiological relevance. The in vitro models are the best suited for high throughput screening and to elucidate the molecular mechanisms. The main aim of this review is to provide insights on selection of the cell types for developing physiologically relevant in vitro wound healing assays, which can be used to improve the value of phytomedicines further.
    Matched MeSH terms: Wound Healing/drug effects*
  18. Ling K, Bastion MC
    Int Ophthalmol, 2019 Oct;39(10):2195-2203.
    PMID: 30536185 DOI: 10.1007/s10792-018-1057-1
    PURPOSE: To evaluate the effect of topical sodium hyaluronate (SH) 0.18% treatment on corneal epithelial healing after epithelial debridement in pars plana vitrectomy in diabetic patients.

    METHOD: This is prospective and randomized clinical trial. Our study population included 30 eyes undergoing pars plana vitrectomy that required near total corneal debridement intra-operatively for surgical view. We compared the residual wound and wound healing rate in between 3 groups: 10 diabetic eyes (DMV) on topical SH 0.18%; 10 diabetic eyes (DMC) and 10 non-diabetic eyes (NDM) not treated with topical SH 0.18%. The corneal epithelial wound was measured at 12, 24, 36, 48, 60, 72 and 120 h after the vitrectomy surgery.

    RESULTS: DMC group had corneal wounds that reepithelialization significantly more slowly than in NDM and DMV groups at 12, 24, 36 and 48 h (Mann-Whitney test p wound and wound healing were detected in between NDM and DMV groups. The mean for epithelial closure in DMC group was delayed 87.6 ± 28.31 h, compared with DMV group (64.8 ± 21.31) and NDM group (56.4 ± 9.88). All groups were followed up 1 month beyond completed wound closure. No recurrent corneal epithelial wound, corneal melting or corneal neovascularization was noted.

    CONCLUSION: Diabetic patients on SH 0.18% four times daily for epithelial defect had similar corneal wounds healing rate as non-diabetics. This treatment significantly improved corneal wound healing and accelerated complete corneal wound resurfacing in diabetic patients.

    Matched MeSH terms: Wound Healing/drug effects*
  19. Fai S, Ahem A, Mustapha M, Mohd Noh UK, Bastion MC
    Asia Pac J Ophthalmol (Phila), 2017;6(5):418-424.
    PMID: 28828764 DOI: 10.22608/APO.201780
    PURPOSE: To determine the effect of topical insulin of 3 concentrations [0.5, 1, and 2 units per drop 4 times per day (QID)] on postoperative corneal epithelial wound healing in diabetic patients.

    DESIGN: A double blind randomized controlled hospital-based study involving diabetic patients with postoperative corneal epithelial defect after vitreoretinal surgery.

    METHODS: Diabetic patients were randomized to 3 different concentrations of topical insulin (DTI 0.5, DTI 1, and DTI 2) or placebo in the control group (DNS). Primary outcome measure was the rate of corneal epithelial wound healing (mm² per hour) over pre-set interval and time from baseline to minimum size of epithelial defect on fluorescein stained anterior segment digital camera photography. Secondary outcome measure was any adverse effect of topical insulin. Follow-up was 1 month.

    RESULTS: Thirty-two eyes of 32 patients undergoing intraoperative corneal debridement with resultant epithelial defect (8 eyes per group) were analyzed. DTI 0.5 was superior to other concentrations achieving 100% healing rate within 72 hours of treatment compared with 62.5% in DNS, 75% in DTI 1, and 62.5% in DTI 2. Statistically, DTI 0.5 achieved significant results (P = 0.036) compared with the diabetic control group (DNS) in terms of mean rate of corneal epithelial wound healing from maximum to minimum defect size. No adverse effect of topical insulin was reported.

    CONCLUSIONS: Topical insulin 0.5 units QID is most effective for healing corneal epithelial defect in diabetic patients after vitrectomy surgery compared with placebo and higher concentrations. Topical insulin is safe for human ocular usage.

    Matched MeSH terms: Wound Healing/drug effects
  20. El-Ferjani RM, Ahmad M, Dhiyaaldeen SM, Harun FW, Ibrahim MY, Adam H, et al.
    Sci Rep, 2016 12 13;6:38748.
    PMID: 27958299 DOI: 10.1038/srep38748
    Co (II) complex (CMLA) was investigated to evaluate the rate of wound healing in rats. Animals were placed into four groups: gum acacia, Intrasite gel, 10 and 20 mg/ml of CMLA. Wounds were made on the dorsal neck area, then treated with Intrasite gel or CMLA; both of these treatments led to faster healing than with gum acacia. Histology of the wounds dressed with CMLA or Intrasite gel displayed a smaller scar width, required less time to heal and showed more collagen staining and fewer inflammatory cells in comparison to wounds dressed with the vehicle. Immunohistochemistry for Hsp70 and TGF-β showed greater staining intensity in the treated groups compared to the vehicle group. Bax staining was less intense in treated groups compared to the vehicle group, suggesting that CMLA and Intrasite gel provoked apoptosis, responsible for the development of granulation tissue into a scar. CD31 protein analysis showed that the treated groups enhanced angiogenesis and increased vascularization compared to the control group. Furthermore, a significant increase in the levels of GPx and SOD and a decrease in MDA were also observed in the treated groups. This results suggest that CMLA is a potentially promising agent for the wounds treatment.
    Matched MeSH terms: Wound Healing/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links