Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Zeolites/chemistry*
  2. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Zeolites/chemistry*
  3. Lee TP, Saad B, Ng EP, Salleh B
    J Chromatogr A, 2012 May 11;1237:46-54.
    PMID: 22444432 DOI: 10.1016/j.chroma.2012.03.031
    Zeolite Linde Type L (LTL) crystals with different length, diameter and particle size (nanosized LTL, rod LTL, cylinder LTL and needle LTL) were synthesized, characterized and were used as sorbent in the micro-solid phase extraction of ochratoxin A (OTA) before the high performance liquid chromatography detection. Under the optimized conditions, the detection limits of OTA for coffee and cereal were 0.09 ng g(-1) and 0.03 ng g(-1), respectively, while the quantification limits were 0.28 ng g(-1) and 0.08 ng g(-1), respectively. The recoveries of OTA of coffee and cereal spiked at 0.5, 10 and 25 ng g(-1) ranged from 91.7 to 101.0%. The proposed method was applied to forty-five samples of coffee and cereal. The presence of OTA was found in twenty-five samples, ranging from 0.28 to 9.33 ng g(-1).
    Matched MeSH terms: Zeolites/chemistry*
  4. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Zeolites/chemistry
  5. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
    Matched MeSH terms: Zeolites/chemistry
  6. Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al.
    Int J Biol Macromol, 2021 Aug 31;185:761-772.
    PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177
    Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
    Matched MeSH terms: Zeolites/chemistry*
  7. Yusof AM, Malek NA
    J Hazard Mater, 2009 Mar 15;162(2-3):1019-24.
    PMID: 18632204 DOI: 10.1016/j.jhazmat.2008.05.134
    The synthesized zeolite NaY from rice husk ash (RHA) and the commercial zeolite NaY both modified with surfactants in amounts equal to 50%, 100% and 200% of their external cation exchange capacity (ECEC) were used to remove chromate and arsenate anions from aqueous solutions. While the unmodified zeolite Y had little or no affinity for the Cr(VI) and As(V) anionic species, the surfactant-modified zeolite Y (SMZY) showed significant ability to remove of these anions from the aqueous solutions. The highest chromates and arsenates adsorption efficiency was observed from solutions of pH values 3 and 8, respectively because of the dominance of the univalent species of both anions. The adsorption equilibrium data were best fitted with the Langmuir isotherm model with the highest removal capacities observed for the SMZY initially prepared considering the hexadecyltrimethyl ammonium (HDTMA) amount equal to the 100% of the ECEC of zeolite Y. Synthesized SMZY remove Cr(VI) and As(V) more than the corresponding commercial one due to its lower silica to alumina ratio. Thus, the HDTMA-covered modified zeolite Y synthesized using RHA can be used to remove Cr(VI) and As(V) from water.
    Matched MeSH terms: Zeolites/chemistry*
  8. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Zeolites/chemistry*
  9. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
    Matched MeSH terms: Zeolites/chemistry*
  10. Taufiqurrahmi N, Mohamed AR, Bhatia S
    Bioresour Technol, 2011 Nov;102(22):10686-94.
    PMID: 21924606 DOI: 10.1016/j.biortech.2011.08.068
    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.
    Matched MeSH terms: Zeolites/chemistry*
  11. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Zeolites/chemistry*
  12. Raharjo Y, Ismail AF, Othman MHD, Malek NANN, Santoso D
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109722.
    PMID: 31349515 DOI: 10.1016/j.msec.2019.05.007
    In this work, the novel imprinted zeolite (IZ) was synthesized, and its properties and performance in terms of adsorption of p-Cresol, which represent the protein-bounded uremic toxins in aqueous phase under phosphate buffer saline, were studied and compared with the synthesized zeolite-Y (ZeoY-S) and commercial CBV 100 zeolite-Y (ZeoY-C). The ZeoY-S was synthesized from sodium aluminate, NaOH, H2O and SiO2 under aging for 24 h at room temperature and hydrothermal condition for 24 h at 100 °C, with an initial composition of 10SiO2:Al2O3:4Na2O:180H2O. The ZeoY-S has been modified by using the imprinting technology to produce the IZ via the use of p-Cresol as a template. The p-Cresol successfully imprinted on the zeolite-Y was proved through the multipoint Brunauer-Emmett-Teller (BET) and the performance of IZ that was compared to ZeoY-S and ZeoY-C. Based on the BET results, it proves that the pore size of IZ is in accordance with the target compound, which is p-Cresol at 0.79 nm. This modification was able to adsorb p-Cresol 2.5 and 3.5 times higher than ZeoY-S and ZeoY-C can, respectively. Langmuir and Freundlich adsorption isotherm models, together with the pseudo-first and -second order and intra-particle diffusion kinetics models, were used to investigate the adsorption behavior of p-Cresol on the zeolites. The IZ has 4.30 times greater competitive molecules than ZeoY-S and the properties of IZ were not influenced by the content of other phenolic group uremic toxins as competitive molecules. It can be concluded that the micropores of zeolite as adsorbent can be modified using the imprinting technology in order to increase its sensitivity and selectivity towards p-Cresol.
    Matched MeSH terms: Zeolites/chemistry*
  13. Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA
    J Environ Manage, 2014 Jun 15;139:1-14.
    PMID: 24662109 DOI: 10.1016/j.jenvman.2014.02.017
    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively.
    Matched MeSH terms: Zeolites/chemistry*
  14. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Zeolites/chemistry*
  15. Derakhshankhah H, Hosseini A, Taghavi F, Jafari S, Lotfabadi A, Ejtehadi MR, et al.
    Sci Rep, 2019 02 07;9(1):1558.
    PMID: 30733474 DOI: 10.1038/s41598-018-37621-4
    Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and thermodynamically favorable interaction with zeolite nanoparticles in a non-cooperative manner. Additionally, fibrinogen experienced a substantial conformational change in the presence of zeolite nanoparticles through a concentration-dependent manner. Simulation results showed that both E- and D-domain of fibrinogen are bound to the EMT zeolite NPs via strong electrostatic interactions, and undergo structural changes leading to exposing normally buried sequences. D-domain has more contribution in this interaction and the C-terminus of γ chain (γ377-394), located in D-domain, showed the highest level of exposure compared to other sequences/residues.
    Matched MeSH terms: Zeolites/chemistry*
  16. Yusof AM, Keat LK, Ibrahim Z, Majid ZA, Nizam NA
    J Hazard Mater, 2010 Feb 15;174(1-3):380-5.
    PMID: 19879040 DOI: 10.1016/j.jhazmat.2009.09.063
    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g(-1) for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH(4)(+) ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite.
    Matched MeSH terms: Zeolites/chemistry*
  17. Tan KH, Awala H, Mukti RR, Wong KL, Rigaud B, Ling TC, et al.
    J Agric Food Chem, 2015 May 13;63(18):4655-63.
    PMID: 25897618 DOI: 10.1021/acs.jafc.5b00380
    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.
    Matched MeSH terms: Zeolites/chemistry*
  18. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
    Matched MeSH terms: Zeolites/chemistry*
  19. Ahmad M, Asghar A, Abdul Raman AA, Wan Daud WM
    PLoS One, 2015;10(10):e0141348.
    PMID: 26517827 DOI: 10.1371/journal.pone.0141348
    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
    Matched MeSH terms: Zeolites/chemistry*
  20. Chew TL, Bhatia S
    Bioresour Technol, 2009 May;100(9):2540-5.
    PMID: 19138514 DOI: 10.1016/j.biortech.2008.12.021
    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.
    Matched MeSH terms: Zeolites/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links