Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Zinc/chemistry
  2. Low KS, Lee CK, Ow-Wee ST
    Bull Environ Contam Toxicol, 1995 Aug;55(2):270-5.
    PMID: 7579934
    Matched MeSH terms: Zinc/chemistry
  3. Hussein MZ, Mohd Amin JB, Zainal Z, Yahaya AH
    J Nanosci Nanotechnol, 2002 Apr;2(2):143-6.
    PMID: 12908300
    Hydrotalcite-like inorganic layers of Zn-Al, a host containing an organic moiety, 2,4-dichlorophenoxy-acetate, as a guest, was prepared by the spontaneous self-assembly method from an aqueous solution for the formation of a new layered organic-inorganic hybrid nanocomposite material. In this synthesis, the host- and guest-forming species were simultaneously included in the mother liquor, aged, and separated. Various Zn/Al ratios (R = 2, 3, and 4), concentrations of 2,4-dichlorophenoxyacetic acid (0.03-0.1 M), and pH (7 and 10) were studied to optimize the formation of the layered nancomposite. It was found that the optimum conditions for the formation of the nanocomposite were R = 4, pH 7, and concentration of 2,4-dichlorophenoxyacetic acid = 0.08 M. X-ray diffraction shows that this sample affords a nanolayered structure with a basal spacing of 24.6 A.
    Matched MeSH terms: Zinc/chemistry*
  4. Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2007 Aug;7(8):2852-62.
    PMID: 17685307
    Layered organic-inorganic hybrid nanocomposite material was synthesised using 4-chlorophenoxyacetate (4CPA) as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method at pH = 7.5 and Zn to Al molar ratio of 4. Both PXRD and FTIR results confirmed that the 4CPA was successfully intercalated into the Zn-AI-LDH interlayer. As a result, a well-ordered nanolayered organic-inorganic hybrid nanocomposite, with the expansion of the basal spacing from 8.9 angstroms in the layered double hydroxide to 20.1 angstroms in the resulting nanocomposite was observed. The FTIR spectrum of the nanocomposite (ZAC) showed that it composed spectral features of Zn-AI-LDH (ZAL) and 4CPA. The nanocomposites synthesized in this work are of mesoporous-type containing 39.8% (w/w) of 4CPA with mole fraction of Al3+ in the inorganic brucite-like layers (xAI) of 0.224. The release studies showed a rapid release of the 4CPA for the first 600 min, and more sustained thereafter. The total amount of 4CPA released from the nanocomposite interlayer into the aqueous solution were 21%, 66%, and 72% in 0.0001, 0.00025, and 0.0005 M sodium carbonate, respectively. In distilled water, about 75, 35, and 57% of 4CPA could be released in 1000 min, when the pH of the release media was set at 3, 6.25, and 12, respectively. In comparison with a structurally similar organic moiety with one more chlorine atom at the 2-position of the aromatic ring, namely 2,4-dichlorophenoxyacetate (24D), the 4CPA showed a slower release rate. The slightly bulkier organic moiety of 24D together with the presence of chlorine atom at the 2-position presumably had contributed to its higher release rate, and it seems that these factors may be exploited for tuning the release rate of intercalated guest anions with similar properties. This study suggests that layered double hydroxide can be used as a carrier for an active agent and the chemical structure of the intercalated moiety can be used to tune the desired release kinetics of the beneficial agent.
    Matched MeSH terms: Zinc/chemistry*
  5. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Zinc/chemistry*
  6. Wong TW, Wahab S, Anthony Y
    Int J Pharm, 2008 Jun 5;357(1-2):154-63.
    PMID: 18329203 DOI: 10.1016/j.ijpharm.2008.01.047
    The drug release characteristics of beads made of poly(methyl vinyl ether-co-maleic acid) using Zn2+ as the crosslinking agent were investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. They were subjected to microwave irradiation at 80W for 5 and 20 min, and at 300W for 1 min 20s and 5 min 20s. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infrared spectroscopy. Treatment of beads by microwave at varying intensities of irradiation can aid to retard the drug release with a greater reduction extent through treating the beads for a longer duration of irradiation. The treatment of beads by microwave induced the formation of multiple polymeric domains of great strength and extent of polymer-polymer and drug-polymer interaction. The release of drug from beads was retarded via the interplay of O-H, N-H, C-H, (CH2)n and C-O functional groups of these domains, and was mainly governed by the state of polymer relaxation of the matrix unlike that of the untreated beads of which the release of drug was effected via drug diffusion and polymer relaxation. In comparison to Ca2+ crosslinked matrix which exhibited inconsistent drug release retardation behavior under the influence of microwave, the extent and rate of drug released from the Zn2+ crosslinked beads were greatly reduced by microwave and the release of drug from these beads was consistently retarded in response to both high and low intensity microwaves.
    Matched MeSH terms: Zinc/chemistry*
  7. Seng HL, Ong HK, Rahman RN, Yamin BM, Tiekink ER, Tan KW, et al.
    J Inorg Biochem, 2008 Nov;102(11):1997-2011.
    PMID: 18778856 DOI: 10.1016/j.jinorgbio.2008.07.015
    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
    Matched MeSH terms: Zinc/chemistry*
  8. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
    Matched MeSH terms: Zinc/chemistry
  9. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Zinc/chemistry
  10. Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Rahman RN, et al.
    Biometals, 2010 Feb;23(1):99-118.
    PMID: 19787298 DOI: 10.1007/s10534-009-9271-y
    Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-kappa(2) N,O)(2)(1,10-phenanthroline-kappa(2) N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)(2)(phen)]x5H(2)O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5'-AG(3)(T(2)AG(3))(3)-3', can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.
    Matched MeSH terms: Zinc/chemistry
  11. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
    Matched MeSH terms: Zinc/chemistry*
  12. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Zinc/chemistry
  13. Yasin Y, Ismail NM, Hussein MZ, Aminudin N
    J Biomed Nanotechnol, 2011 Jun;7(3):486-8.
    PMID: 21830495
    A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.
    Matched MeSH terms: Zinc/chemistry*
  14. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Jun;102(11):6392-8.
    PMID: 21486692 DOI: 10.1016/j.biortech.2011.03.039
    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.
    Matched MeSH terms: Zinc/chemistry*
  15. Eltayeb NE, Teoh SG, Adnan R, Teh JB, Fun HK
    J Fluoresc, 2011 Jul;21(4):1393-400.
    PMID: 21222144 DOI: 10.1007/s10895-010-0822-y
    A series of Zn(II)-Schiff bases I, II and III complexes were synthesized by reaction of o-phenylenediamine with 3-methylsalicylaldehyde, 4-methylsalicylaldehyde and 5-methylsalicylaldehyde. These complexes were characterized using FT-IR, UV-Vis, Diffuse reflectance UV-Vis, elemental analysis and conductivity. Complex III was characterized by XRD single crystal, which crystallizes in the triclinic system, space group P-1, with lattice parameters a=9.5444(2) Å, b=11.9407(2) Å, c=21.1732(3) Å, V=2390.24(7) Å(3), D ( c )=1.408 Mg m(-3), Z=4, F(000)=1050, GOF=0.981, R1=0.0502, wR2=0.1205. Luminescence property of these complexes was investigated in DMF solution and in the solid state. Computational study of the electronic properties of complex III showed good agreement with the experimental data.
    Matched MeSH terms: Zinc/chemistry*
  16. Kuan CS, Wong MT, Choi SB, Chang CC, Yee YH, Wahab HA, et al.
    Int J Mol Sci, 2011;12(7):4441-55.
    PMID: 21845088 DOI: 10.3390/ijms12074441
    Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.
    Matched MeSH terms: Zinc/chemistry*
  17. Salga MS, Ali HM, Abdulla MA, Abdelwahab SI
    Chem Biol Interact, 2012 Jan 25;195(2):144-53.
    PMID: 22178775 DOI: 10.1016/j.cbi.2011.11.008
    Zinc complexes were reported to have anti-ulcer activity and used as drug for the treatment of gastrointestinal disorders. A novel compound dichlorido-zinc(II)-4-(2-(5-methoxybenzylidene amino)ethyl)piperazin-1-iumphenolate (ZnHMS) was synthesized, characterized and evaluated for its gastroprotective activity against ethanol-induced ulcer in rats. Gross and microscopic lesions, histochemical staining of glycogen storage, biochemical and immunological parameters were taken into consideration. Oral administration of ZnHMS (30 and 60 mg/kg; 14 days) dose-dependently inhibited gastric lesions. It significantly increased the mucus content and total acidity compared to the control group (P<0.01). Serum levels of aspartate (AST), alanine (ALT) transaminases, pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and anti-inflammatory interleukin-10 (IL-10) in the rats exposed to ethanol induced ulceration have been altered. ZnHMS considerably enhances (P<0.05) the protection of gastric epithelia by modulating the acute alterations of AST, ALT, IL-6, IL-10, TNF-α and stomach glycogen. Interestingly, ZnHMS did interfere with the natural release of nitric oxide. In addition, acute toxicity study revealed no abnormal sign to the rats treated with ZnHMS (2000 mg/kg). These findings suggest that the gastroprotective activity of ZnHMS might contribute in adjusting the inflammatory cytokine-mediated oxidative damage to the gastric mucosa.
    Matched MeSH terms: Zinc/chemistry
  18. Chin LF, Kong SM, Seng HL, Tiong YL, Neo KE, Maah MJ, et al.
    J Biol Inorg Chem, 2012 Oct;17(7):1093-105.
    PMID: 22825726 DOI: 10.1007/s00775-012-0923-y
    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
    Matched MeSH terms: Zinc/chemistry*
  19. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Nanomedicine, 2012;7:2129-41.
    PMID: 22619549 DOI: 10.2147/IJN.S30461
    The intercalation of perindopril erbumine into Zn/Al-NO(3)-layered double hydroxide resulted in the formation of a host-guest type of material. By virtue of the ion-exchange properties of layered double hydroxide, perindopril erbumine was released in a sustained manner. Therefore, this intercalated material can be used as a controlled-release formulation.
    Matched MeSH terms: Zinc/chemistry
  20. Hussein-Al-Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Mol Sci, 2012;13(5):5899-916.
    PMID: 22754339 DOI: 10.3390/ijms13055899
    The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs) and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR) study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.
    Matched MeSH terms: Zinc/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links