Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Chek MF, Kim SY, Mori T, Tan HT, Sudesh K, Hakoshima T
    iScience, 2020 May 22;23(5):101084.
    PMID: 32388399 DOI: 10.1016/j.isci.2020.101084
    Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291.
    Matched MeSH terms: Acyltransferases
  2. Kosterin OE, Kompier T
    Zootaxa, 2018 Jun 06;4429(2):281-294.
    PMID: 30313268 DOI: 10.11646/zootaxa.4429.2.4
    Amphicnemis valentini sp. nov. is described from the Ream Peninsula of Cambodia (holotype: Cambodia, Preah Sihanouk Province, Ream Peninsula, 10.52258 N 103.69556 E, RMNH) and Phú Quốc Island, Kien Giang Province of Vietnam, both in the Cardamom ecoregion. It is similar to A. gracilis Krüger, 1898, which occurs in Peninsular Malaysia and Sumatra, but differs from it by a long process on the male prothorax.
    Matched MeSH terms: Acyltransferases
  3. Sanmugavelan R, Teoh TC, Roslan N, Mohamed Z
    Turk J Biol, 2018;42(3):213-223.
    PMID: 30814883 DOI: 10.3906/biy-1710-107
    In this study, transformation of BrCHS var 2 into B. rotunda cell suspension culture, followed by chalcone synthase enzymatic assay and HPLC analysis was conducted to investigate whether the substrate specificity for BrCHS var 2 is either cinnamoyl-CoA or p-coumaroyl-CoA. The HPLC profile showed an increase in the amount of pinocembrin chalcone when cinnamoyl-CoA and malonyl-CoA were added but not p-coumaroyl-CoA. Molecular docking was performed to explore the binding of cinnamoyl-CoA and p-coumaroyl-CoA to BrCHS var 2 receptor and the docking results showed that cinnamoyl-CoA formed numerous hydrogen bonds and more negative docked energy than p-coumaroyl-CoA. Cinnamoyl-CoA showed good interactions with Cys 164 to initiate the subsequent formation of pinocembrin chalcone, whereas the hydroxyl group of p-coumaroyl-CoA formed an unfavorable interaction with Gln 161 that caused steric hindrance to subsequent formation of naringenin chalcone. Docked conformation analysis results also showed that malonyl-CoA formed hydrogen bonding with Cys 164, His 303, and Asn 336 residues in BrCHS var 2. The results show that cinnamoyl-CoA is the preferred substrate for BrCHS var 2.
    Matched MeSH terms: Acyltransferases
  4. Arsad H, Sudesh K, Nazalan N, Muhammad TS, Wahab H, Razip Samian M
    Trop Life Sci Res, 2009 Dec;20(2):1-14.
    PMID: 24575175 MyJurnal
    The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.
    Matched MeSH terms: Acyltransferases
  5. Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, et al.
    Sci Rep, 2017 07 13;7(1):5312.
    PMID: 28706283 DOI: 10.1038/s41598-017-05509-4
    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.
    Matched MeSH terms: Acyltransferases/metabolism; Acyltransferases/chemistry*
  6. Khor WC, Puah SM, Tan JA, Puthucheary SD, Chua KH
    PLoS One, 2015;10(12):e0145933.
    PMID: 26710336 DOI: 10.1371/journal.pone.0145933
    Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT) and RNA polymerase sigma-factor (rpoD) genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions--exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.
    Matched MeSH terms: Acyltransferases/genetics
  7. Puthucheary SD, Puah SM, Chua KH
    PLoS One, 2012;7(2):e30205.
    PMID: 22383958 DOI: 10.1371/journal.pone.0030205
    BACKGROUND: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity.

    METHODOLOGY/PRINCIPAL FINDINGS: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%).

    CONCLUSIONS/SIGNIFICANCE: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 94 Aeromonas isolates in accordance with results of other recent studies. Aeromonas aquariorum showed to be the most prevalent species (50%) containing an important subset of virulence genes lip/alt/ser/fla/aer. Different combinations of the virulence genes present in the isolates indicate their probable role in the pathogenesis of Aeromonas infections.

    Matched MeSH terms: Acyltransferases/genetics*
  8. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Acyltransferases/genetics
  9. Hu L, Xu Z, Wang M, Fan R, Yuan D, Wu B, et al.
    Nat Commun, 2019 10 16;10(1):4702.
    PMID: 31619678 DOI: 10.1038/s41467-019-12607-6
    Black pepper (Piper nigrum), dubbed the 'King of Spices' and 'Black Gold', is one of the most widely used spices. Here, we present its reference genome assembly by integrating PacBio, 10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2 Mb sequences (45 scaffolds with an N50 of 29.8 Mb) are assembled into 26 pseudochromosomes. A phylogenomic analysis of representative plant genomes places magnoliids as sister to the monocots-eudicots clade and indicates that black pepper has diverged from the shared Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shikimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene families. Comparative transcriptomic analyses disclose berry-specific upregulated expression in representative genes in each of these gene families. These data provide an evolutionary perspective and shed light on the metabolic processes relevant to the molecular basis of species-specific piperine biosynthesis.
    Matched MeSH terms: Acyltransferases/genetics
  10. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
    Matched MeSH terms: Acyltransferases/pharmacology*; Acyltransferases/chemistry*
  11. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Acyltransferases/genetics*; Acyltransferases/metabolism; Acyltransferases/chemistry
  12. Cheong TG, Chan M, Kurunathan S, Ali SA, ZiNing T, Zainuddin ZF, et al.
    Microb Pathog, 2010 Feb;48(2):85-90.
    PMID: 19900531 DOI: 10.1016/j.micpath.2009.11.001
    Vibrio cholerae is a Gram-negative bacterium that causes diarrheal disease. V. cholerae O1 and O139 serogroups are toxigenic and are known to cause epidemic cholera. These serogroups produce cholera toxin and other accessory toxins such as accessory cholera enterotoxin, zonula occludens toxin, and multifunctional, autoprocessing repeat in toxin (MARTX). In the present study, we incorporated mutated rtxA and rtxC genes that encode MARTX toxin into the existing aminolevulinic acid (ALA) auxotrophic vaccine candidate VCUSM2 of V. cholerae O139 serogroup. The rtxC mutant was named VCUSM9 and the rtxC/rtxA mutant was named VCUSM10. VCUSM9 and VCUSM10 were able to colonize intestinal cells well, compared with the parent vaccine strain, and produced no fluid accumulation in a rabbit ileal loop model. Cell rounding and western blotting assays indicated that mutation of the rtxC gene alone (VCUSM9 strain) did not abolish MARTX toxicity. However mutation of both the rtxA and rtxC genes (VCUSM10) completely abolished MARTX toxicity. Thus we have produced a new, less reactogenic, auxotrophic rtxC/rtxA mutated vaccine candidate against O139 V. cholerae.
    Matched MeSH terms: Acyltransferases/genetics*
  13. Neoh SZ, Tan HT, Trakunjae C, Chek MF, Vaithanomsat P, Hakoshima T, et al.
    Microb Cell Fact, 2024 Feb 15;23(1):52.
    PMID: 38360657 DOI: 10.1186/s12934-024-02329-w
    BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation.

    RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4.

    CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.

    Matched MeSH terms: Acyltransferases/genetics; Acyltransferases/metabolism
  14. Sakinah Ariffin, Azhar Mohamad, Ratnam, Wickneswari
    Jurnal Sains Nuklear Malaysia, 2012;24(1):91-101.
    MyJurnal
    Colour is one of the most important traits in orchids and has created great interest in breeding programmes. Gamma irradiation is an alternative way for generation of somaclonal variation for new flower colours. Phenotypic changes are usually observed during screening and selection of mutants. Understanding of targeted gene expression level and evaluation of the changes facilitate in the development of functional markers for selection of desired flower colour mutants. Four Dendrobium orchid sequences (NCBI accessions: AM490639, AY41319, FM209429 and DQ462460) were selected to design gene specific primers based on information for chalcone synthase (CHS) from NCBI database. Quantitative real-time PCR (qPCR) was used to understand flower colour expression quantitatively derived from the CHS gene activities in different flower tissues (petal and sepal) from control Dendrobium Sonia (red purple), mutant DS 35-1/M (purple pink) and mutant DS 35-WhiteA. It was found that expression of CHS gene was highest in sepals of white flowers and lowest in both sepals and petals of purple pink flowers. Genomic DNA was amplified and PCR products were sequenced, aligned and compared. Sequence variations of CHS partial gene in Dendrobium Sonia mutants with different flower colour showed that two protein positions have been changed as compared to the control. These non-synonymous mutations may have contributed to the colour alterations in the white and purple pink mutants. This paper describes important procedures to quantify gene expression such as RNA isolation (quantity and quality), cDNA synthesis and primer design steps for CHS genes.
    Matched MeSH terms: Acyltransferases
  15. Tan IKP, Foong CP, Tan HT, Lim H, Zain NA, Tan YC, et al.
    J Biotechnol, 2020 Apr 10;313:18-28.
    PMID: 32171790 DOI: 10.1016/j.jbiotec.2020.03.006
    The polyhydroxyalkanoate (PHA) producing capability of four bacterial strains isolated from Antarctica was reported in a previous study. This study analyzed the PHA synthase genes and the PHA-associated gene clusters from the two antarctic Pseudomonas isolates (UMAB-08 and UMAB-40) and the two antarctic Janthinobacterium isolates (UMAB-56 and UMAB-60) through whole-genome sequence analysis. The Pseudomonas isolates were found to carry PHA synthase genes which fall into two different PHA gene clusters, namely Class I and Class II, which are involved in the biosynthesis of short-chain-length-PHA (SCL-PHA) and medium-chain-length-PHA (MCL-PHA), respectively. On the other hand, the Janthinobacterium isolates carry a Class I and an uncharacterized putative PHA synthase genes. No other gene involved in PHA synthesis was detected in close proximity to the uncharacterized putative PHA synthase gene in the Janthinobacterium isolates, therefore it falls into a separate clade from the ordinary Class I, II, III and IV clades of PHA synthase (PhaC) phylogenetic tree. Multiple sequence alignment showed that the uncharacterized putative PHA synthase gene contains all the highly conserved amino acid residues and the proposed catalytic triad of PHA synthase. PHA biosynthesis and in vitro PhaC enzymatic assay results showed that this uncharacterized putative PHA synthase from Janthinobacterium sp. UMAB-60 is funtional. This report adds new knowledge to the PHA synthase database as we describe scarce information of PHA synthase genes and PHA-associated gene clusters from the antarctic bacterial isolates (extreme and geographically isolated environment) and comparing with those from non-antarctic PHA-producing bacteria.
    Matched MeSH terms: Acyltransferases
  16. Saika A, Watanabe Y, Sudesh K, Tsuge T
    J Biosci Bioeng, 2014 Jun;117(6):670-5.
    PMID: 24484910 DOI: 10.1016/j.jbiosc.2013.12.006
    An obligate anaerobic bacterium Clostridium difficile has a unique metabolic pathway to convert leucine to 4-methylvalerate, in which 4-methyl-2-pentenoyl-CoA (4M2PE-CoA) is an intermediate of this pathway. 4M2PE-CoA is also able to be converted to 3-hydroxy-4-methylvalerate (3H4MV), a branched side chain monomer unit, for synthesis of polyhydroxyalkanoate (PHA) copolymer. In this study, to synthesize 3H4MV-containing PHA copolymer from leucine, the leucine metabolism-related enzymes (LdhA and HadAIBC) derived from C. difficile and PHA biosynthesis enzymes (PhaPCJAc and PhaABRe) derived from Aeromonas caviae and Ralstonia eutropha were co-expressed in the codon usage-improved Escherichia coli. Under microaerobic culture conditions, this E. coli was able to synthesize P(3HB-co-12.2 mol% 3H4MV) from glucose with the supplementation of 1 g/L leucine. This strain also produced P(3HB-co-12.6 mol% 3H4MV) using the culture supernatant of leucine overproducer E. coli strain NS1391 as the medium for PHA production, achieving 3H4MV copolymer synthesis only from glucose. Furthermore, we tested the feasibility of the 3H4MV copolymer synthesis in E. coli strain NS1391 from glucose. The recombinant E. coli NS1391 was able to synthesize P(3HB-co-3.0 mol% 3H4MV) from glucose without any leucine supplementation. This study demonstrates the potential of the new metabolic pathway for 3H4MV synthesis using leucine metabolism-related enzymes from C. difficile.
    Matched MeSH terms: Acyltransferases/biosynthesis; Acyltransferases/genetics
  17. Tai YT, Foong CP, Najimudin N, Sudesh K
    J Biosci Bioeng, 2016 Apr;121(4):355-64.
    PMID: 26467694 DOI: 10.1016/j.jbiosc.2015.08.008
    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated.
    Matched MeSH terms: Acyltransferases
  18. Ng LM, Sudesh K
    J Biosci Bioeng, 2016 Nov;122(5):550-557.
    PMID: 27132174 DOI: 10.1016/j.jbiosc.2016.03.024
    Aquitalea sp. USM4 (JCM 19919) was isolated from a freshwater sample at Lata Iskandar Waterfall in Perak, Malaysia. It is a rod-shaped, gram-negative bacterium with high sequence identity (99%) to Aquitalea magnusonii based on 16S rRNA gene analysis. Aquitalea sp. USM4 also possessed a PHA synthase gene (phaC), which had amino acid sequence identity of 77-78% to the PHA synthase of Chromobacterium violaceum ATCC12472 and Pseudogulbenkiania sp. NH8B. PHA biosynthesis results showed that wild-type Aquitalea sp. USM4 was able to accumulate up to 1.5 g/L of poly(3-hydroxybutyrate), [P(3HB)]. The heterologous expression of the PHA synthase gene of Aquitalea sp. USM4 (phaCAq) in Cupriavidus necator PHB(-)4 had resulted in PHA accumulation up to 3.2 g/L of P(3HB). It was further confirmed by (1)H nuclear magnetic resonance (NMR) analysis that Aquitalea sp. USM4 and C. necator PHB(-)4 transformant were able to produce PHA containing 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxy-4-methylvalerate (3H4MV) monomers from suitable precursor substrates. Interestingly, relatively high PHA synthase activity of 863 U/g and 1402 U/g were determined in wild-type Aquitalea sp. USM4 and C. necator PHB(-)4 transformant respectively. This is the first report on the member of genus Aquitalea as a new PHA producer as well as in vitro and in vivo characterization of a novel PHA synthase from Aquitalea sp. USM4.
    Matched MeSH terms: Acyltransferases/genetics*; Acyltransferases/isolation & purification; Acyltransferases/metabolism*
  19. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Acyltransferases/genetics
  20. Ling SC, Tsuge T, Sudesh K
    J Appl Microbiol, 2011 Sep;111(3):559-71.
    PMID: 21689225 DOI: 10.1111/j.1365-2672.2011.05084.x
    Polyhydroxyalkanoate (PHA) with enhanced physicochemical properties will be ideal for a wide range of practical applications. The incorporation of 3-hydroxy-4-methylvalerate (3H4MV) into the polymer backbone is known to improve the overall properties of the resulting polymer. However, the most suitable micro-organism and PHA synthase that can synthesize this monomer efficiently still remain unknown at present. Therefore, we evaluated the abilities of a locally isolated Chromobacterium sp. USM2 to produce PHA containing 3H4MV.
    Matched MeSH terms: Acyltransferases/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links