Displaying publications 1 - 20 of 239 in total

Abstract:
Sort:
  1. Aghaei M, Ramezanitaghartapeh M, Javan M, Hoseininezhad-Namin MS, Mirzaei H, Rad AS, et al.
    PMID: 33049473 DOI: 10.1016/j.saa.2020.119023
    The adsorption behavior of the amino acid, glycine (Gly), via the carboxyl, hydroxyl, and amino groups onto the surfaces of Al12N12 and Al16N16 fullerene-like cages were computationally evaluated by the combination of density functional theory (DFT) and molecular docking studies. It was found that Gly can chemically bond with the Al12N12 and Al16N16 fullerene-like cages as its amino group being more favorable to interact with the aluminum atoms of the adsorbents compared to carboxyl and hydroxyl groups. Oxygen and carbon doping were reported to reduce steric hindrance for Glycine interaction at Al site of Al12ON11/Gly and Al12CN11/Gly complexes. Interaction was further enhanced by oxygen doping due to its greater electron withdrawing effect. Herein, the Al12ON11/Gly complex where two carbonyl groups of Gly are bonded to the aluminum atoms of the Al12N12 fullerene-like cage is the most stable interaction configuration showing ∆adsH and ∆adsG values of -81.74 kcal/mol and -66.21 kcal/mol, respectively. Computational studies also revealed the frequency shifts that occurred due to the interaction process. Molecular docking analysis revealed that the Al12N12/Gly (-11.7 kcal/mol) and the Al12ON11/Gly (-9.2 kcal/mol) complexes have a good binding affinity with protein tumor necrosis factor alpha (TNF-α). TNF-α was implicated as a key cytokine in various diseases, and it has been a validated therapeutic target for the treatment of rheumatoid arthritis. These results suggest that the Al12N12/Gly complex in comparison with the Al16N16/Gly, Al12ON11/Gly, and the Al12CN11/Gly complexes could be efficient inhibitors of TNF-α.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  2. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  3. Khodzori FA, Mazlan NB, Chong WS, Ong KH, Palaniveloo K, Shah MD
    Biomolecules, 2023 Mar 06;13(3).
    PMID: 36979419 DOI: 10.3390/biom13030484
    Sponges are aquatic, spineless organisms that belong to the phylum Porifera. They come in three primary classes: Hexactinellidae, Demospongiae, and Calcarea. The Demospongiae class is the most dominant, making up over 90% of sponge species. One of the most widely studied genera within the Demospongiae class is Xestospongia, which is found across Southeast Asian waters. This genus is of particular interest due to the production of numerous primary and secondary metabolites with a wide range of biological potentials. In the current review, the antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antiparasitic, and cytotoxic properties of metabolites from several varieties of Southeast Asian Xestospongia spp. were discussed. A total of 40 metabolites of various natures, including alkaloids, fatty acids, steroids, and quinones, were highlighted in X. bergquistia, X. testudinaria, X. muta, X. exigua, X. ashmorica and X. vansoesti. The review aimed to display the bioactivity of Xestospongia metabolites and their potential for use in the pharmaceutical sector. Further research is needed to fully understand their bioactivities.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  4. Chan JSW, Lim XY, Japri N, Ahmad IF, Tan TYC
    Planta Med, 2024 Mar;90(3):204-218.
    PMID: 38035621 DOI: 10.1055/a-2219-9801
    Zingiber zerumbet, a plant native to tropical and subtropical Asia, has a vast range of traditional uses and has been continuously studied for its medicinal properties. However, a systematic methodological approach in evidence synthesis on the plant's efficacy is lacking, and there is a need to elicit the current research status of this plant. This scoping review was conducted to systematically explore and collate the available scientific evidence on the efficacy of Z. zerumbet and its main phytoconstituents in various formulations, their biological mechanisms, and their safety. Results included 54 articles consisting of animal studies, while there were no published human studies. Only half of the included studies provided adequate reporting on the quality-related details of Z. zerumbet formulations. Identified pharmacological activities were analgesic, anti-inflammatory, anti-diabetic, anti-hyperlipidemic, anti-neoplastic, immunomodulatory, antioxidant, antipyretic, hepatoprotective, nephroprotective, gastroprotective, and locomotor-reducing activities. Notably, the ethanolic extract of Z. zerumbet was found to be well tolerated for up to 28 days. In conclusion, Z. zerumbet and zerumbone have various pharmacological effects, especially in analgesic and anti-inflammatory models. However, there is still a pressing need for comprehensive safety data to conduct clinical trials.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  5. Zakaria NH, Fadhlina A, Sheikh HI, Hairani MAS, Mohd Fauzi MSH, Abdul Majid FA
    World J Biol Psychiatry, 2024 Sep;25(7):353-369.
    PMID: 38900601 DOI: 10.1080/15622975.2024.2369329
    OBJECTIVE: Syzygium aromaticum and Coffea canephora are acknowledged for their outstanding antioxidant, anti-inflammatory, and nerve-stimulant properties, showcasing potential in brain protection. Therefore, this study aims to quantitatively review existing literature and assess the potential of using it to formulate a herbal tea blend for managing stress and anxiety.

    METHODS: Data was retrieved from the Scopus database, and a bibliometric analysis was performed using VOSviewer software.

    RESULTS: Following a screening process, a total of 121 articles were identified, with S. aromaticum yielding a higher number compared to C. canephora. A detailed exploration of each plant revealed active components such as eugenol, β-caryophyllene, α-humulene, caffeine, mangiferin, and chlorogenic acids, each exhibiting stimulatory effects alongside antioxidant and anti-inflammatory properties. The neuroprotective effects were attributed to the reduction of oxidative stress and inflammation, coupled with the stimulation of neurotransmitters and hormones like dopamine, serotonin, cortisol, and adrenaline.

    CONCLUSIONS: The review showed that these plants positively affect mood and cognition by influencing the brain's pleasure system. This suggests the need for further research to combine these plant extracts for developing 'Tenang tea', a potential herbal blend for managing stress and anxiety.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  6. Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, et al.
    Drug Des Devel Ther, 2024;18:4723-4748.
    PMID: 39469723 DOI: 10.2147/DDDT.S478388
    α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  7. Zhang Y, BinShaari R, Nawi MABA, Bin Hassan A, Cui C
    Curr Pharm Biotechnol, 2024;25(14):1767-1777.
    PMID: 38178677 DOI: 10.2174/0113892010276692231220103636
    Primarily sourced from Asteraceae family herbs such as the Dandelion, Taraxasterol is a pentacyclic triterpenoid lauded for its extensive biological functionalities. Its therapeutic potency is demonstrated in various disease models, encompassing enteritis, arthritis, acute hepatic injury, and pneumonia. Scientific literature underscores its anti-inflammatory, antioxidant, and antineoplastic attributes. The primary aim of this study is to thoroughly explore the diseasemodulating mechanisms and effects of taraxasterol. We endeavor to provide an exhaustive review of the experimental subjects, intervention components, distinct action modalities, contributing factors, and protein pathway expressions associated with taraxasterol, systematically represented via diagrams and tables. Such a schematic representation encourages a continued academic dialogue concerning taraxasterol's pharmacological characteristics. This review is envisioned as a practical guide for the selection of experimental subjects and methodologies in prospective research. It is intended to further illuminate taraxasterol's pharmacodynamics, thereby offering theoretical and empirical justification for its clinical application.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  8. Gul S, Ahmed S, Kifli N, Uddin QT, Batool Tahir N, Hussain A, et al.
    J Transl Med, 2014;12:316.
    PMID: 25428431 DOI: 10.1186/s12967-014-0316-9
    Hordeum vulgare L. (HV or barley) is used by traditional healers to treat various inflammatory and cardiovascular diseases, without the knowledge of pharmacologic rationale behind its actions. This study was designed to explore the potential scientific mechanism(s) that could explain the use of Hordeum vulgare in traditional medicine as a treatment for various inflammatory and cardiovascular diseases.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  9. Chua LS
    J Ethnopharmacol, 2013 Dec 12;150(3):805-17.
    PMID: 24184193 DOI: 10.1016/j.jep.2013.10.036
    Rutin is a common dietary flavonoid that is widely consumed from plant-derived beverages and foods as traditional and folkloric medicine worldwide. Rutin is believed to exhibit significant pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Till date, over 130 registered therapeutic medicinal preparations are containing rutin in their formulations. This article aims to critically review the extraction methods for plant-based rutin and its pharmacological activities. This review provides comprehensive data on the performance of rutin extraction methods and the extent of its pharmacological activities using various in vitro and in vivo experimental models.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  10. Teoh HL, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2021;23(2):43-56.
    PMID: 33639080 DOI: 10.1615/IntJMedMushrooms.2021037649
    Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Lifestyle modifications through the diet are the mainstay of treatment. Auricularia nigricans is a popular edible mushroom known to possess medicinal properties. Gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis indicated that linoleic acid ethyl ester, butyl 9,12-octadecadienoate, 9,12-octadecadienoic acid, ergosta-5,7,22-trien-3-ol, 2(3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid, and 3,30-di-0-methyl ellagic acid were present in the A. nigricans ethyl acetate (EA) fraction. The cytotoxicity assay showed that the EA fraction was noncytotoxic to HepG2 cells at concentrations < 100 μg/mL. In the antihepatic steatosis assay, 50 μg/mL of EA fraction caused a decline in absorbance to 0.20 ± 0.02 compared to palmitic acid (PA)-induced cells (0.24 ± 0.02). Furthermore, cells treated with 50 μg/mL and 25 μg/mL of EA fraction contributed an approximately 1.12-fold and 1.08-fold decrease in lipid accumulation compared to PA-induced cells. Coincubation with PA and 25 μg/mL of EA fraction decreased levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 to 140.48 ± 8.12, 91.16 ± 2.40, 184.00 ± 22.68, and 935.88 ± 39.36 pg/mL compared to PA-induced cells. The presence of the EA fraction also suppressed the stress-activated protein kinase/Jun amino-terminal kinase, p-38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription 3 signaling pathways. In conclusion, these findings suggest that the A. nigricans EA fraction demonstrates antisteatotic effects involving antioxidant capacity, hypolipidemic effects, and anti-inflammatory capacity in the PA-induced NAFLD pathological cell model.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  11. Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, et al.
    Int J Nanomedicine, 2021;16:7035-7050.
    PMID: 34703226 DOI: 10.2147/IJN.S297040
    Introduction: Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS).

    Methods: The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials.

    Results: The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8.

    Discussion: The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  12. Wan Afifudeen CL, Teh KY, Cha TS
    Mol Biol Rep, 2022 Feb;49(2):1475-1490.
    PMID: 34751914 DOI: 10.1007/s11033-021-06903-y
    In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  13. Hamad RS, El Sherif F, Al Abdulsalam NK, Abd El-Moaty HI
    Trop Biomed, 2023 Mar 01;40(1):45-54.
    PMID: 37356003 DOI: 10.47665/tb.40.1.010
    Cryptosporidiosis is a serious illness in immunodeficient patients, and there is still no drug that can completely remove the parasite from the host. The present study represents the first report investigating the impact of the active molecule chlorogenic acid (CGA), naturally isolated from Moringa oleifera leaf extract (EMOLE), on immunosuppressed, Cryptosporidium parvum-infected BALB/c mice. Mice were divided into five groups: normal mice, infected immunosuppressed mice, and infected immunosuppressed mice treated with EMOLE, CGA, and nitazoxanide (NTZ) drugs. Parasitological, immunological, and histopathological investigations were recorded besides differences in the mice' body weight. Infected control mice showed elevated levels of oocyst shedding throughout the study. The EMOLE- and CGA-treated groups showed 84.2% and 91.0% reductions in oocyst shedding, respectively, with no significant difference compared to the drug control. The inflammatory markers IFN-γ, IL-6, IL-1β, and TNF-α were significantly higher in the infected control group. Treatment with 300 mg/kg/day of EMOLE or 30 mg/kg/day of CGA significantly downregulated pro-inflammatory cytokine levels compared to the infected group, although they did not change significantly compared to the NTZ-treated group. Histopathology of intestinal sections showed inflammatory and pathological changes in the infected control group. Low-grade tissue changes and an obvious improvement in villi structure were seen in mice treated with CGA. This study highlighted the role of CGA, isolated and purified from EMOLE, as an effective anti-inflammatory agent in eradicating C. parvum infection.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  14. Ekeuku SO, Chin KY, Mohd Ramli ES
    PMID: 36453484 DOI: 10.2174/1871530323666221130152737
    BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis.

    OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing.

    METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes).

    RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11β hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps.

    CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  15. Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):116971.
    PMID: 37717805 DOI: 10.1016/j.envres.2023.116971
    Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  16. Abdullah DA, Aishah EA
    Trop Biomed, 2023 Dec 01;40(4):453-461.
    PMID: 38308833 DOI: 10.47665/tb.40.4.011
    The present study was conducted to investigate the immunomodulatory and anti-inflammatory effects of Elettaria cardamomum essential oil (ECEO) for the control of acute Toxoplasma gondii infection. The effect of ECEO on T. gondii tachyzoites was measured by the tetrazolium bromide method. Mice received ECEO orally at doses of 1-4 mg/kg/day for 14 days. Once acute toxoplasmosis was induced in mice, their mortality rate and parasite load were recorded. The level of liver antioxidant/oxidant enzymes and the level of mRNA expression of interleukin-1 beta and interferongamma were also investigated. ECEO particularly at a concentration of 150 µg/ml has promising in vitro anti-Toxoplasma effects (p<0.001). After treatment with ECEO, the mortality rate (9th day) and parasite load decreased (p<0.001) in the infected mice. ECEO markedly (p < 0.05) restored hepatic oxidant and antioxidant enzyme levels, as well as increased cytokines. These results report a significant inhibitory effect of ECEO mainly at a dose of 4 mg/mL, against the T. gondii Rh strain through strengthening the immune system and reducing inflammation and oxidative stress; however, further research is needed to verify these results.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  17. Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N
    Food Res Int, 2020 Nov;137:109702.
    PMID: 33233276 DOI: 10.1016/j.foodres.2020.109702
    Sargassum brown seaweed is well-known to contain several bioactive compounds which exhibit various biological activities, including anti-inflammatory and antioxidant activity. Lipophilic extracts and fractions of Sargassum were reported to possess promising anti-inflammatory activity. This study, therefore, aims to evaluate the anti-inflammatory and antioxidant activity of Sargassum cristaefolium crude lipid extract and its fractions. The brown seaweed was obtained from Awur Bay, Jepara - Indonesia. Crude lipid fractionation was performed using normal phase column chromatography, and three different fractions (dichloromethane, acetone, methanol) were produced. The results showed that treatment of acetone fraction exerted strongest nitric oxide inhibition in lipopolysaccharide-induced RAW 264.7 cells, both in pre-incubated and co-incubated cell culture models. This outcome was in accordance with its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and ferric reducing antioxidant power (FRAP). Metabolite profiling of lipid fractions was performed by ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry, while the orthogonal projection to latent structures analysis was conducted to determine some features with significant correlation to the bioactivity. There were 14 feature candidates considered from both positive and negative ionization mode datasets. Seven out of them were putatively identified as pheophytin a (1), all-trans fucoxanthin (2), 132-hydroxy-pheophytin a (3), pheophorbide a (4), 1-hexadecanoyl-2-(9Z-octadecenoyl)-3-O-β-D-galactosyl-sn-glycerol (6), 1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-3-O-β-D-galactosyl-sn-glycerol (10), and 1-(9Z,12Z,15Z-octadecatrienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galactosyl-sn glycerol (12).
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  18. Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, et al.
    Exp Gerontol, 2024 Apr;188:112389.
    PMID: 38432575 DOI: 10.1016/j.exger.2024.112389
    Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  19. Abdul Rahim R, Jayusman PA, Muhammad N, Mohamed N, Lim V, Ahmad NH, et al.
    PMID: 33805420 DOI: 10.3390/ijerph18073532
    Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  20. Hambali A, Jusril NA, Md Hashim NF, Abd Manan N, Adam SK, Mehat MZ, et al.
    J Alzheimers Dis, 2024;99(s1):S119-S138.
    PMID: 38250772 DOI: 10.3233/JAD-230875
    BACKGROUND: Neuroinflammation and oxidative stress can aggravate the progression of Alzheimer's disease (AD). Centella asiatica has been traditionally consumed for memory and cognition. The triterpenes (asiaticoside, madecassoside, asiatic acid, madecassic acid) have been standardized in the ethanolic extract of Centella asiatica (SECA). The bioactivity of the triterpenes in different solvent polarities of SECA is still unknown.

    OBJECTIVE: In this study, the antioxidative and anti-neuroinflammatory effects of SECA and its fractions were explored on lipopolysaccharides (LPS)-induced microglial cells.

    METHODS: HPLC measured the four triterpenes in SECA and its fractions. SECA and its fractions were tested for cytotoxicity on microglial cells using MTT assay. NO, pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), ROS, and MDA (lipid peroxidation) produced by LPS-induced microglial cells were measured by colorimetric assays and ELISA. Nrf2 and HO-1 protein expressions were measured using western blotting.

    RESULTS: The SECA and its fractions were non-toxic to BV2 microglial cells at tested concentrations. The levels of NO, TNF-α, IL-6, ROS, and lipid peroxidation in LPS-induced BV2 microglial cells were significantly reduced (p 

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links