Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Mungroo MR, Tong T, Khan NA, Anuar TS, Maciver SK, Siddiqui R
    Int Microbiol, 2021 Aug;24(3):363-371.
    PMID: 33754231 DOI: 10.1007/s10123-021-00171-3
    Acanthamoeba keratitis is a sight-endangering eye infection, and causative organism Acanthamoeba presents a significant concern to public health, given escalation of contact lens wearers. Contemporary therapy is burdensome, necessitating prompt diagnosis and aggressive treatment. None of the contact lens disinfectants (local and international) can eradicate Acanthamoeba effectively. Using a range of compounds targeting cellulose, ion channels, and biochemical pathways, we employed bioassay-guided testing to determine their anti-amoebic effects. The results indicated that acarbose, indaziflam, terbuthylazine, glimepiride, inositol, vildagliptin and repaglinide showed anti-amoebic effects. Compounds showed minimal toxicity on human cells. Therefore, effects of the evaluated compounds after conjugation with nanoparticles should certainly be the subject of future studies and will likely lead to promising leads for potential applications.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*
  2. Girish S, Kumar S, Aminudin N, Hashim NM
    Sci Rep, 2021 04 09;11(1):7833.
    PMID: 33837230 DOI: 10.1038/s41598-021-81418-x
    Blastocystis sp. infection, although many remain asymptomatic, there is growing data in recent studies that suggests it is a frequent cause of gastrointestinal symptoms in children and adults. This proposes that treatment against this infection is necessary however metronidazole (MTZ), which is the current choice of treatment, has expressed non-uniformity in its efficacy in combating this infection which has led to the study of alternative treatment. In our previous study, it was established that Tongkat Ali fractions exhibited promising anti-protozoal properties which leads to the current aim of the study, to further narrow down the purification process in order to identify the specific active compound promoting the anti-protozoal effect through HPLC analysis. Based on the data analysis and in-vitro susceptibility assay, the collected Tongkat Ali fraction that demonstrated anti-blastocystis property was shown to contain eurycomanone. Previous studies have suggested that there is a mechanism in Blastocystis sp. that regulates the apoptotic process to produce higher number of viable cells when treated. In reference to this, our current study also aims to investigate the apoptotic response of Tongkat Ali extract and eurycomanone across different subtype groups with comparison to MTZ. Based on our investigation, both Tongkat Ali extract and eurycomanone induced the high apoptotic rate however exhibited a reduction in viable cell count (p 
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*
  3. Levaique H, Pamlard O, Apel C, Bignon J, Arriola M, Kuhner R, et al.
    Molecules, 2021 Mar 11;26(6).
    PMID: 33799883 DOI: 10.3390/molecules26061551
    Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology
  4. Khan TA, Al Nasr IS, Mujawah AH, Koko WS
    Trop Biomed, 2021 Mar 01;38(1):135-141.
    PMID: 33797536 DOI: 10.47665/tb.38.1.023
    Leishmaniasis and toxoplasmosis are parasitic protozoal diseases that pose serious health concerns, especially for immunocompromised people. Leishmania major and Toxoplasma gondii are endemic in Saudi Arabia and are particularly common in the Qassim Region. The present work was conducted to evaluate the in vitro antileishmanial and antitoxoplasmal activity of methanolic extracts and phytochemical fractions from two plants, Euphorpia retusa and Pulicaria undulata, which are ethnobotanical agents used to treat parasitic infection. Whole E. retusa and P. undulata plants were extracted with methanol and fractionated using petroleum ether, chloroform, ethyl acetate, n-butanol, and water and then were tested in vitro against L. major promastigote and the amastigote stages of T. gondii; the cytotoxicity of the extracts was tested against Vero cell line. The methanolic extracts of E. retusa and P. undulata exhibited promising antitoxoplasmal activity against T. gondii with EC50 values 5.6 and 12.7 μg mL-1, respectively. The chloroform fraction of P. undulata was the most potent, exhibiting an EC50 of 1.4 μg mL-1 and SI value of 12.1. It was also the most active fraction against both L. major promastigotes and amastigotes, exhibiting an EC50 of 3.9 and 3.8 μg mL-1 and SI values 4.4 and 4.5, respectively. The chloroform fraction from P. undulata is a very good candidate for the isolation of active antitoxoplasmal and antileishmanial ingredients; therefore, further phytochemical analysis for active compound isolation is highly recommended.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*
  5. Timothy MR, Ibrahim YKE, Muhammad A, Chechet GD, Aimola IA, Mamman M
    Trop Biomed, 2021 Mar 01;38(1):94-101.
    PMID: 33797530 DOI: 10.47665/tb.38.1.016
    Trypanothione reductase is a key enzyme that upholds the redox balance in hemoflagellate protozoan parasites such as T. congolense. This study aims at unraveling the potency of Kolaviron against trypanothione reductase in T. congolense infection using Chrysin as standard. The experiment was performed using three different approaches; in silico, in vitro and in vivo. Kolaviron and Chrysin were docked against trypanothione reductase, revealing binding energies (-9.3 and -9.0 kcal/mol) and Ki of 0.211μM and 0.151μM at the active site of trypanothione reductase as evident from the observed strong hydrophobic/hydrogen bond interactions. Parasitized blood was used for parasite isolation and trypanothione reductase activity assay using standard protocol. Real-time PCR (qPCR) assay was implored to monitor expression of trypanothione reductase using primers targeting the 177-bp repeat satellite DNA in T. congolense with SYBR Green to monitor product accumulation. Kolaviron showed IC50 values of 2.64μg/ml with % inhibition of 66.78 compared with Chrysin with IC50 values of 1.86μg/ml and % inhibition of 53.80. In vivo studies following the administration of these compounds orally after 7 days post inoculation resulted in % inhibition of Chrysin (57.67) and Kolaviron (46.90). Equally, Kolaviron relative to Chrysin down regulated the expression trypanothione reductase gene by 1.352 as compared to 3.530 of the infected group, in clear agreement with the earlier inhibition observed at the fine type level. Overall, the findings may have unraveled the Kolaviron potency against Trypanosoma congolense infection in rats.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*
  6. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
    Matched MeSH terms: Antiprotozoal Agents/metabolism; Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/therapeutic use; Antiprotozoal Agents/chemistry*
  7. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Mini Rev Med Chem, 2021;21(4):398-425.
    PMID: 33001013 DOI: 10.2174/1389557520666201001130114
    β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/chemistry
  8. Mazlan NW, Clements C, Edrada-Ebel R
    Mar Drugs, 2020 Dec 21;18(12).
    PMID: 33371387 DOI: 10.3390/md18120661
    The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), β-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 μM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 μg/mL, respectively.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification*; Antiprotozoal Agents/pharmacology
  9. He WH, Feng XX, Wu X, Zhai XH, Li YY, Zhang B, et al.
    Trop Biomed, 2020 Dec 01;37(4):871-876.
    PMID: 33612740 DOI: 10.47665/tb.37.4.871
    To evaluate the inhibitory effects of drugs on the growth of Babesia gibsoni, relative quantification real-time PCR method was developed in this study. The 18S rRNA gene was used as a target gene for the 2-ΔΔCt method analysis. Additionally, chicken RNA was added to the parasitized blood before total RNA extraction. The chicken β-actin gene was selected as an internal control gene for the 2-ΔΔCt method analysis. The 100 µL parasitized blood samples with different percentages of parasitized erythrocytes (PPEs) (3%, 1.5%, 0.75%, 0.375% and 0.1875%) were prepared for relative quantification of B. gibsoni. Regression analysis results revealed significant linear relationships between the relative quantification value and parasitemia. 18S rRNA gene expression was significantly decreased after treatment with diminazene aceturate and artesunate in vitro drug sensitivity test. This result suggested that this relative quantification real-time PCR method can be used to evaluate the effects of drug inhibition.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*
  10. Taha M, Sain AA, Ali M, Anouar EH, Rahim F, Ismail NH, et al.
    Bioorg Chem, 2020 06;99:103819.
    PMID: 32325334 DOI: 10.1016/j.bioorg.2020.103819
    Leishmaniasis has affected a wider part of population around the globe. Most often, the existing regiments to battle against leishmaniasis are inadequate and limited. In our ongoing efforts to develop new leishmanicidal agents, we have synthesized a series of novel and symmetrical bis-Schiff base-disulfide hybrids 1-27. Intermediate disulfide was synthesized from corresponding 2-aminothiol followed by reacting the coupled adduct with various aromatic aldehydes. All these compounds showed outstanding inhibition when compared with standard (Table 1). Out of twenty seven analogues, twenty two analogues i.e. 1-5, 7-13, 17-21, 23-27 analogues showed excellent inhibitory potential with EC50 values ranging from 0.010 ± 0.00 to 0.096 ± 0.01 μM while five compounds i.e. 6, 14-16, and 22 showed good inhibitory potential with EC50 values ranging from 0.10 ± 0.00 to 0.137 ± 0.01 μM when compared with the standard Amphotericin B. Structure-activity relationship has been established while molecular docking studies were performed to pin the binding interaction of active molecules. This study will help to develop new antileishmanial lead compounds.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  11. Al Nasr IS
    Trop Biomed, 2020 Mar 01;37(1):15-23.
    PMID: 33612714
    The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*
  12. Lasing T, Phumee A, Siriyasatien P, Chitchak K, Vanalabhpatana P, Mak KK, et al.
    Bioorg Med Chem, 2020 01 01;28(1):115187.
    PMID: 31761725 DOI: 10.1016/j.bmc.2019.115187
    In a search for potent antileishmanial drug candidates, eighteen rhodacyanine analogues bearing fluorine or perfluoroalkyl substituents at various positions were synthesized. These compounds were tested for their inhibitory activities against Leishmania martiniquensis and L. orientalis. This 'fluorine-walk' analysis revealed that the introduction of fluorine atom at C-5, 6, 5', or 6' on the benzothiazole units led to significant enhancement of the activity, correlating with the less negative reduction potentials of the fluorinated analogues confirmed by the electrochemical study. On the other hand, CF3 and OCF3 groups were found to have detrimental effects, which agreed with the poor aqueous solubility predicted by the in silico ADMET analysis. In addition, some of the analogues including the difluorinated species showed exceptional potency against the promastigote and axenic amastigote stages (IC50 = 40-85 nM), with the activities surpassing both amphotericin B and miltefosine.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  13. Abdullahi SA, Unyah NZ, Nordin N, Basir R, Nasir WM, Alapid AA, et al.
    Mini Rev Med Chem, 2020;20(9):739-753.
    PMID: 31660810 DOI: 10.2174/1389557519666191029105736
    Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/therapeutic use*; Antiprotozoal Agents/chemistry
  14. Anwar A, Siddiqui R, Hameed A, Shah MR, Khan NA
    Med Chem, 2020;16(7):841-847.
    PMID: 31544702 DOI: 10.2174/1573406415666190722113412
    BACKGROUND: Acanthamoeba is an opportunistic pathogen widely spread in the environment. Acanthamoeba causes excruciating keratitis which can lead to blindness. The lack of effective drugs and its ability to form highly resistant cyst are one of the foremost limitations against successful prognosis. Current treatment involves mixture of drugs at high doses but still recurrence of infection can occur due to ineffectiveness of drugs against the cyst form. Pyridine and its natural and synthetic derivatives are potential chemotherapeutic agents due to their diverse biological activities.

    OBJECTIVE: To study the antiamoebic effects of four novel synthetic dihydropyridine (DHP) compounds against Acanthamoeba castellanii belonging to the T4 genotype. Furthermore, to evaluate their activity against amoeba-mediated host cells cytopathogenicity as well as their cytotoxicity against human cells.

    METHODS: Dihydropyridines were synthesized by cyclic dimerization of alkylidene malononitrile derivatives. Four analogues of functionally diverse DHPs were tested against Acanthamoeba castellanii by using amoebicidal, encystation and excystation assays. Moreover, Lactate dehydrogenase assays were carried out to study cytopathogenicity and cytotoxicity against human cells.

    RESULTS: These compounds showed significant amoebicidal and cysticidal effects at 50 μM concentration, whereas, two of the DHP derivatives also significantly reduced Acanthamoebamediated host cell cytotoxicity. Moreover, these DHPs were found to have low cytotoxicity against human cells suggesting a good safety profile.

    CONCLUSION: The results suggest that DHPs have potential against Acanthamoeba especially against the more resistant cyst stage and can be assessed further for drug development.

    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  15. Salin NH, Noordin R, Al-Najjar BO, Kamarulzaman EE, Yunus MH, Karim IZA, et al.
    PLoS One, 2020;15(5):e0225232.
    PMID: 32442170 DOI: 10.1371/journal.pone.0225232
    Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  16. Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AU, et al.
    Steroids, 2019 08;148:56-62.
    PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001
    The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  17. Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R
    ACS Chem Neurosci, 2019 06 19;10(6):2692-2696.
    PMID: 30970208 DOI: 10.1021/acschemneuro.9b00111
    Primary amoebic meningoencephalitis (PAM), a deadly brain infection, is caused by brain-eating amoeba Naegleria fowleri. The current first line of treatment against PAM is a mixture of amphotericin B, rifampin, and miltefosine. Since, no single effective drug has been developed so far, the mortality rate is above 95%. Moreover, severe adverse side effects are associated with these drugs. Nanotechnology has provided several advances in biomedical applications especially in drug delivery and diagnosis. Herein, for the first time we report antiamoebic properties of cinnamic acid (CA) and gold nanoparticles conjugated with CA (CA-AuNPs) against N. fowleri. CA-AuNPs were successfully synthesized by sodium borohydride reduction of tetrachloroauric acid. Size and morphology were determined by atomic force microscopy (AFM) while the surface plasmon resonance band was analyzed by ultraviolet-visible (UV-vis) spectrophotometry for the characterization of the nanoparticles. Amoebicidal and cytopathogenicity (host cell cytotoxicity) assays revealed that both CA and CA-AuNPs displayed significant anti- N. fowleri properties ( P < 0.05), whereas nanoparticles conjugation further enhanced the anti- N. fowleri effects of CA. This study established a potential drug lead, while CA-AuNPs appear to be promising candidate for drug discovery against PAM.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*
  18. Wahid W, Ahmad Fahmi NA, Mohd Salleh AF, Mohd Yasin '
    Respir Med Case Rep, 2019;28:100939.
    PMID: 31667075 DOI: 10.1016/j.rmcr.2019.100939
    Bronchopulmonary lophomoniasis is rare but immunocompromised individual is susceptible to this infection. We reported a case of bronchopulmonary lophomoniasis in a Malaysian female with systemic lupus erythromatosus. She presented with productive cough, shortness of breath and high-grade fever for 2 weeks. Physical examination revealed bronchial sound and crackles over the left lung with, reduced expansion and dull percussion in lower left lobe. Chest radiography showed consolidation of the left lung. Routine laboratory tests revealed general low cell count. Blood and sputum culture were negative. Bronchoalveolar lavage stain and culture for bacterial and fungal were negative. Bronchoalveolar lavage for Lophomonas blattarum was positive. Patient was treated with antiprotozoal drug, metronidazole. All her clinical problems resolved and she was discharged 14 days after admission.
    Matched MeSH terms: Antiprotozoal Agents
  19. Rajamanikam A, Kumar S, Samudi C, Kudva M
    Parasitol Res, 2018 Aug;117(8):2585-2590.
    PMID: 29872961 DOI: 10.1007/s00436-018-5948-x
    Blastocystis sp. is a gastrointestinal (GI) protozoan parasite reported to cause non-specific GI symptoms including diarrhea, flatulence, abdominal pain, and nausea. Complete eradication of Blastocystis sp. is rather challenging even with the drug of choice, i.e., metronidazole. Here, we report on two Blastocystis sp.-infected individuals, who presented increased parasite load and exacerbated symptoms upon treatment with the usual recommended dosage and regime of metronidazole. The two studies uniquely demonstrate for the first time a cyst count as high as fivefold more than the original cyst count before treatment and show an exacerbation of GI symptoms despite treatment. The study provides additional support in recognizing metronidazole resistance in Blastocystis sp. and its consequences towards the pathogenicity of the parasite.
    Matched MeSH terms: Antiprotozoal Agents/therapeutic use*
  20. Camprubí D, Rodriguez-Valero N, Losada I, Grau-Junyent JM, Muñoz J
    Travel Med Infect Dis, 2018 05 23;24:16.
    PMID: 29802894 DOI: 10.1016/j.tmaid.2018.05.009
    Matched MeSH terms: Antiprotozoal Agents/administration & dosage; Antiprotozoal Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links