Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Khan NA, Ong TYY, Siddiqui R
    ACS Chem Neurosci, 2017 04 19;8(4):687-688.
    PMID: 28225265 DOI: 10.1021/acschemneuro.7b00049
    Brain infections due to Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri often lead to death. Despite differences in the preferential sites of infection in the brain, the mode of delivery of drugs is often intravenous. Here, we discuss targeted therapeutic approach to affect parasite viability without affecting the host cells, with an eye to improve formulation of drugs and/or administration of drugs against brain-eating amoebae.
    Matched MeSH terms: Antiprotozoal Agents/administration & dosage*
  2. Girish S, Kumar S, Aminudin N
    Parasit Vectors, 2015;8:332.
    PMID: 26082155 DOI: 10.1186/s13071-015-0942-y
    In the local Malaysian context, herbal plants such as Eurycoma longifolia (Tongkat Ali), Orthosiphon stamineus (MisaiKucing), Ficus deltoidea (Mas Cotek), Zingiber officinale (Halia Bara) and Barringtonia racemosa (Putat) are known and widely used for its therapeutic properties. The first part of this study aims to screen for the anti-protozoal activity of these herbal plant extracts against Blastocystis sp. isolate subtype (ST) 3. Herbal extract with the highest efficacy was further fractionized into water and ethyl acetate fractions and tested against ST1, ST3 and ST5 Blastocystis sp. isolates. These isolates were also exposed to allopathic drugs, Metronidazole (MTZ), Tinidazole, Trimethoprim-sulfamethoxazole(TMP-SMX), Ketoconazole and Nitazoxanide for comparison purpose.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  3. Taha M, Sain AA, Ali M, Anouar EH, Rahim F, Ismail NH, et al.
    Bioorg Chem, 2020 06;99:103819.
    PMID: 32325334 DOI: 10.1016/j.bioorg.2020.103819
    Leishmaniasis has affected a wider part of population around the globe. Most often, the existing regiments to battle against leishmaniasis are inadequate and limited. In our ongoing efforts to develop new leishmanicidal agents, we have synthesized a series of novel and symmetrical bis-Schiff base-disulfide hybrids 1-27. Intermediate disulfide was synthesized from corresponding 2-aminothiol followed by reacting the coupled adduct with various aromatic aldehydes. All these compounds showed outstanding inhibition when compared with standard (Table 1). Out of twenty seven analogues, twenty two analogues i.e. 1-5, 7-13, 17-21, 23-27 analogues showed excellent inhibitory potential with EC50 values ranging from 0.010 ± 0.00 to 0.096 ± 0.01 μM while five compounds i.e. 6, 14-16, and 22 showed good inhibitory potential with EC50 values ranging from 0.10 ± 0.00 to 0.137 ± 0.01 μM when compared with the standard Amphotericin B. Structure-activity relationship has been established while molecular docking studies were performed to pin the binding interaction of active molecules. This study will help to develop new antileishmanial lead compounds.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  4. Lasing T, Phumee A, Siriyasatien P, Chitchak K, Vanalabhpatana P, Mak KK, et al.
    Bioorg Med Chem, 2020 01 01;28(1):115187.
    PMID: 31761725 DOI: 10.1016/j.bmc.2019.115187
    In a search for potent antileishmanial drug candidates, eighteen rhodacyanine analogues bearing fluorine or perfluoroalkyl substituents at various positions were synthesized. These compounds were tested for their inhibitory activities against Leishmania martiniquensis and L. orientalis. This 'fluorine-walk' analysis revealed that the introduction of fluorine atom at C-5, 6, 5', or 6' on the benzothiazole units led to significant enhancement of the activity, correlating with the less negative reduction potentials of the fluorinated analogues confirmed by the electrochemical study. On the other hand, CF3 and OCF3 groups were found to have detrimental effects, which agreed with the poor aqueous solubility predicted by the in silico ADMET analysis. In addition, some of the analogues including the difluorinated species showed exceptional potency against the promastigote and axenic amastigote stages (IC50 = 40-85 nM), with the activities surpassing both amphotericin B and miltefosine.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  5. Taha M, Baharudin MS, Ismail NH, Khan KM, Jaafar FM, Samreen, et al.
    Bioorg Med Chem Lett, 2013 Jun 1;23(11):3463-6.
    PMID: 23608761 DOI: 10.1016/j.bmcl.2013.03.051
    Compounds 1-25 showed varying degree of antileishmanial activities with IC50 values ranging between 1.95 and 88.56 μM. Compounds 2, 10, and 11 (IC50=3.29±0.07 μM, 1.95±0.04 μM, and 2.49±0.03 μM, respectively) were found to be more active than standard pentamidine (IC50=5.09±0.04 μM). Compounds 7 (IC50=7.64±0.1 μM), 8 (IC50=13.17±0.46 μM), 18 (IC50=13.15±0.02 μM), and 24 (IC50=15.65±0.41 μM) exhibited good activities. Compounds 1, 3, 4, 5, 9, 12, 15, 18, and 19 were found to be moderately active. Compounds 13, 14, 16, 17, 20-25 showed weak activities with IC50 values ranging between 57 and 88 μM.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis*; Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/chemistry
  6. Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA, et al.
    Eur J Med Chem, 2014 Sep 12;84:731-8.
    PMID: 25069019 DOI: 10.1016/j.ejmech.2014.07.078
    4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis*; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  7. Venkatesh G, Majid MI, Ramanathan S, Mansor SM, Nair NK, Croft SL, et al.
    Biomed Chromatogr, 2008 May;22(5):535-41.
    PMID: 18205140 DOI: 10.1002/bmc.965
    A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.
    Matched MeSH terms: Antiprotozoal Agents/blood; Antiprotozoal Agents/pharmacokinetics; Antiprotozoal Agents/chemistry
  8. Anwar A, Siddiqui R, Hameed A, Shah MR, Khan NA
    Med Chem, 2020;16(7):841-847.
    PMID: 31544702 DOI: 10.2174/1573406415666190722113412
    BACKGROUND: Acanthamoeba is an opportunistic pathogen widely spread in the environment. Acanthamoeba causes excruciating keratitis which can lead to blindness. The lack of effective drugs and its ability to form highly resistant cyst are one of the foremost limitations against successful prognosis. Current treatment involves mixture of drugs at high doses but still recurrence of infection can occur due to ineffectiveness of drugs against the cyst form. Pyridine and its natural and synthetic derivatives are potential chemotherapeutic agents due to their diverse biological activities.

    OBJECTIVE: To study the antiamoebic effects of four novel synthetic dihydropyridine (DHP) compounds against Acanthamoeba castellanii belonging to the T4 genotype. Furthermore, to evaluate their activity against amoeba-mediated host cells cytopathogenicity as well as their cytotoxicity against human cells.

    METHODS: Dihydropyridines were synthesized by cyclic dimerization of alkylidene malononitrile derivatives. Four analogues of functionally diverse DHPs were tested against Acanthamoeba castellanii by using amoebicidal, encystation and excystation assays. Moreover, Lactate dehydrogenase assays were carried out to study cytopathogenicity and cytotoxicity against human cells.

    RESULTS: These compounds showed significant amoebicidal and cysticidal effects at 50 μM concentration, whereas, two of the DHP derivatives also significantly reduced Acanthamoebamediated host cell cytotoxicity. Moreover, these DHPs were found to have low cytotoxicity against human cells suggesting a good safety profile.

    CONCLUSION: The results suggest that DHPs have potential against Acanthamoeba especially against the more resistant cyst stage and can be assessed further for drug development.

    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  9. Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AU, et al.
    Steroids, 2019 08;148:56-62.
    PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001
    The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  10. Salin NH, Noordin R, Al-Najjar BO, Kamarulzaman EE, Yunus MH, Karim IZA, et al.
    PLoS One, 2020;15(5):e0225232.
    PMID: 32442170 DOI: 10.1371/journal.pone.0225232
    Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  11. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

    Matched MeSH terms: Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/chemistry
  12. Anwar A, Khan NA, Siddiqui R
    Parasit Vectors, 2018 01 09;11(1):26.
    PMID: 29316961 DOI: 10.1186/s13071-017-2572-z
    Acanthamoeba spp. are protist pathogens and causative agents of serious infections including keratitis and granulomatous amoebic encephalitis. Its ability to convert into dormant and highly resistant cysts form limits effectiveness of available therapeutic agents and presents a pivotal challenge for drug development. During the cyst stage, Acanthamoeba is protected by the presence of hardy cyst walls, comprised primarily of carbohydrates and cyst-specific proteins, hence synthesis inhibition and/or degradation of cyst walls is of major interest. This review focuses on targeting of Acanthamoeba cysts by identifying viable therapeutic targets.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification*; Antiprotozoal Agents/pharmacology*
  13. Muhd Haffiz J, Norhayati I, Getha K, Nor Azah MA, Mohd Ilham A, Lili Sahira H, et al.
    Trop Biomed, 2013 Mar;30(1):9-14.
    PMID: 23665703 MyJurnal
    Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/toxicity; Antiprotozoal Agents/chemistry
  14. Baig AM, Khan NA, Katyara P, Lalani S, Baig R, Nadeem M, et al.
    Chem Biol Drug Des, 2021 01;97(1):18-27.
    PMID: 32602961 DOI: 10.1111/cbdd.13755
    Acanthamoeba spp. cause a corneal infection, Acanthamoeba keratitis (AK), and a cerebral infection, granulomatous amoebic encephalitis (GAE). Though aggressive chemotherapy has been able to kill the active trophozoite form of Acanthamoeba, the encysted form of this parasite has remained problematic to resist physiological concentrations of drugs. The emergence of encysted amoeba into active trophozoite form poses a challenge to eradicate this parasite. Acanthamoeba trophozoites have active metabolic machinery that furnishes energy in the form of ATPs by subjecting carbohydrates and lipids to undergo pathways including glycolysis and beta-oxidation of free fatty acids, respectively. However, very little is known about the metabolic preferences and dependencies of an encysted trophozoite on minerals or potential nutrients that it consumes to live in an encysted state. Here, we investigate the metabolic and nutrient preferences of the encysted trophozoite of Acanthamoeba castellanii and the possibility to target them by drugs that act on calcium ion dependencies of the encysted amoeba. The experimental assays, immunostaining coupled with bioinformatics tools show that the encysted Acanthamoeba uses diverse nutrient pathways to obtain energy in the quiescent encysted state. These findings highlight potential pathways that can be targeted in eradicating amoebae cysts successfully.
    Matched MeSH terms: Antiprotozoal Agents/metabolism; Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/therapeutic use; Antiprotozoal Agents/chemistry*
  15. Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, et al.
    Eur J Med Chem, 2017 Jan 27;126:1021-1033.
    PMID: 28012342 DOI: 10.1016/j.ejmech.2016.12.019
    Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis*; Antiprotozoal Agents/metabolism; Antiprotozoal Agents/pharmacology*; Antiprotozoal Agents/chemistry
  16. Ibrahim MA, Yusof MS, Amin NM
    Molecules, 2014 Apr 22;19(4):5191-204.
    PMID: 24759076 DOI: 10.3390/molecules19045191
    Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A) and A. polyphaga (CCAP 1501/3A). The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39-8.77 µg·mL⁻¹ (9.47-30.46 µM) for A. castellanii and 3.74-9.30 µg·mL⁻¹ (14.84-31.91 µM) for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI) staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.
    Matched MeSH terms: Antiprotozoal Agents/chemical synthesis; Antiprotozoal Agents/pharmacology*
  17. Nakisah MA, Ida Muryany MY, Fatimah H, Nor Fadilah R, Zalilawati MR, Khamsah S, et al.
    World J Microbiol Biotechnol, 2012 Mar;28(3):1237-44.
    PMID: 22805843 DOI: 10.1007/s11274-011-0927-8
    Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification*; Antiprotozoal Agents/pharmacology*
  18. Kavitha N, Noordin R, Chan KL, Sasidharan S
    PMID: 22781137 DOI: 10.1186/1472-6882-12-91
    Toxoplasma gondii infection causes toxoplasmosis, an infectious disease with worldwide prevalence. The limited efficiency of drugs against this infection, their side effects and the potential appearance of resistant strains make the search of novel drugs an essential need. We examined Eurycoma longifolia root extract and fractions as potential sources of new compounds with high activity and low toxicity. The main goal of this study was to investigate the anti-T. gondii activity of crude extract (TACME) and four fractions (TAF 273, TAF 355, TAF 191 and TAF 401) from E. longifolia, with clindamycin as the positive control.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification; Antiprotozoal Agents/pharmacology*
  19. Imran S, Taha M, Ismail NH
    Curr Med Chem, 2015;22(38):4412-33.
    PMID: 26438249
    Bisindolylmethane and its derivatives are pharmacologically active and applicable in the field of pharmaceutical chemistry. Bisindolylmethanes have a variety of biological activities such as antihyperglycemic, antiinflammatory, antibacterial, anticancer, and antileishmanial activities, including enzyme inhibition activity. They play a crucial role in many diseases especially anticancer activity. Modifying their structure had proven to be useful in the search of new therapeutic agents. Extensive research carried out on bisindolylmethane and its derivatives shows that they are pharmacologically significant. The present review focuses on the pharmacological profile of bisindolylmethane derivatives. This review includes the current literature with an update of research findings as well as the perspectives that they hold for future research.
    Matched MeSH terms: Antiprotozoal Agents/pharmacology; Antiprotozoal Agents/chemistry*
  20. Mazlan NW, Clements C, Edrada-Ebel R
    Mar Drugs, 2020 Dec 21;18(12).
    PMID: 33371387 DOI: 10.3390/md18120661
    The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), β-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 μM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 μg/mL, respectively.
    Matched MeSH terms: Antiprotozoal Agents/isolation & purification*; Antiprotozoal Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links