Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  2. Foo JB, Saiful Yazan L, Tor YS, Wibowo A, Ismail N, How CW, et al.
    J Ethnopharmacol, 2015 May 26;166:270-8.
    PMID: 25797115 DOI: 10.1016/j.jep.2015.03.039
    Dillenia suffruticosa (Family: Dilleniaceae) or commonly known as "Simpoh air" in Malaysia, is traditionally used for treatment of cancerous growth including breast cancer.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  3. Abdullah AS, Mohammed AS, Rasedee A, Mirghani ME, Al-Qubaisi MS
    PMID: 25881293 DOI: 10.1186/s12906-015-0575-x
    In this study, the effect of mango kernel extract in the induction of apoptosis of the breast cancer (MDA-MB-231) cell line was examined. This is an attempt to discover alternatives to current therapeutic regimes in the treatment of breast cancers.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  4. Aziz MNM, Hussin Y, Che Rahim NF, Nordin N, Mohamad NE, Yeap SK, et al.
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303982 DOI: 10.3390/molecules23010075
    Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  5. Huang D, Awad ACA, Tang C, Chen Y
    Environ Toxicol, 2024 Mar;39(3):1335-1349.
    PMID: 37955318 DOI: 10.1002/tox.24036
    BACKGROUND: Demethylnobiletin (DN), with a variety of biological activities, is a polymethoxy-flavanone (PMF) found in citrus. In the present study, we explored the biological activities and potential mechanism of DN to improve cerebral ischemia reperfusion injury (CIRI) in rats, and identified DN as a novel neuroprotective agent for patients with ischemic brain injury.

    METHODS: Rat CIRI models were established via middle cerebral artery occlusion (MCAO). Primary nerve cells were isolated and cultured in fetal rat cerebral cortex in vitro, and oxygen-glucose deprivation/reperfusion (OGD/R) models of primary nerve cells were induced. After intervention with DN with different concentrations in MCAO rats and OGD/R nerve cells, 2,3,5-triphenyltetrazolium chloride staining was used to quantify cerebral infarction size in CIRI rats. Modified neurological severity score was utilized to assess neurological performance. Histopathologic staining and live/dead cell-viability staining was used to observe apoptosis. Levels of glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS) and malondialdehyde (MDA) in tissues and cells were detected using commercial kits. DN level in serum and cerebrospinal fluid of MCAO rats were measured by liquid chromatography tandem mass spectrometry. In addition, expression levels of proteins like Kelch like ECH associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nfr2) and heme oxygenase 1 (HO-1) in the Nrf2/HO-1 pathway, and apoptosis-related proteins like Cleaved caspase-3, BCL-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot and immunofluorescence.

    RESULTS: DN can significantly enhance neurological function recovery by reducing cerebral infarction size and weakening neurocytes apoptosis in MCAO rats. It was further found that DN could improve oxidative stress (OS) injury of nerve cells by bringing down MDA and ROS levels and increasing SOD and GSH levels. Notably, DN exerts its pharmacological influences through entering blood-brain barrier. Mechanically, DN can reduce Keap1 expression while activate Nrf2 and HO-1 expression in neurocytes.

    CONCLUSIONS: The protective effect of DN on neurocytes have been demonstrated in both in vitro and in vivo circumstances. It deserves to be developed as a potential neuroprotective agent through regulating the Nrf2/HO-1 signaling pathway to ameliorate neurocytes impairment caused by OS.

    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  6. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  7. Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N
    J Mol Neurosci, 2015 Mar;55(3):609-17.
    PMID: 25129099 DOI: 10.1007/s12031-014-0400-x
    Quercetin glycosides, rutin and isoquercitrin, are potent antioxidants that have been found to possess neuroprotective effect in diseases like Parkinson's and Alzheimer's disease. In the present study, we have examined the gene expression changes with rutin and isoquercitrin pretreatment on 6-hydroxydopamine (6-OHDA)-treated toxicity in rat pheochromocytoma (PC12) cells. PC12 cells were pretreated with rutin or isoquercitrin and subsequently exposed to 6-OHDA. Rutin-pretreated PC12 attenuated the Park2, Park5, Park7, Casp3, and Casp7 genes which were expressed significantly in the 6-OHDA-treated PC12 cells. Rutin upregulated the TH gene which is important in dopamine biosynthesis, but isoquercitrin pretreatment did not affect the expression of this gene. Both rutin and isoquercitrin pretreatments upregulated the ion transport and antiapoptotic genes (NSF and Opa1). The qPCR array data were further validated by qRT-PCR using four primers, Park5, Park7, Casp3, and TH. This finding suggests that changes in the expression levels of transcripts encoded by genes that participate in ubiquitin pathway and dopamine biosynthesis may be involved in Parkinson's disease.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  8. Salim LZ, Mohan S, Othman R, Abdelwahab SI, Kamalidehghan B, Sheikh BY, et al.
    Molecules, 2013 Sep 12;18(9):11219-40.
    PMID: 24036512 DOI: 10.3390/molecules180911219
    There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  9. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  10. Azmi NH, Ismail N, Imam MU, Ismail M
    PMID: 23866310 DOI: 10.1186/1472-6882-13-177
    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  11. Chan CK, Goh BH, Kamarudin MN, Kadir HA
    Molecules, 2012 May 31;17(6):6633-57.
    PMID: 22728359 DOI: 10.3390/molecules17066633
    The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  12. Abubakar IB, Lim KH, Kam TS, Loh HS
    Phytomedicine, 2017 Jul 01;30:74-84.
    PMID: 28545672 DOI: 10.1016/j.phymed.2017.03.004
    BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells.

    PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells.

    METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis.

    RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways.

    CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.

    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  13. Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, et al.
    Cell Death Differ, 2016 Dec;23(12):1973-1984.
    PMID: 27447114 DOI: 10.1038/cdd.2016.76
    Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  14. Sothivelr V, Hasan MY, Mohd Saffian S, Zainalabidin S, Ugusman A, Mahadi MK
    J Cardiovasc Pharmacol, 2022 Sep 01;80(3):393-406.
    PMID: 35767710 DOI: 10.1097/FJC.0000000000001305
    Several types of cardiovascular cells use microRNA-21 ( miR-21 ), which has been linked to cardioprotection. In this study, we systematically reviewed the results of published papers on the therapeutic effect of miR-21 for myocardial infarction. Studies described the cardioprotective effects of miR-21 to reduce infarct size by improving angiogenesis, antiapoptotic, and anti-inflammatory mechanisms. Results suggest that cardioprotective effects of miR-21 may work synergistically to prevent the deterioration of cardiac function during postischemia. However, there are other results that indicate that miR-21 positively regulates tissue fibrosis, potentially worsening a postischemic injury. The dual functionalities of miR-21 occur through the targeting of genes and signaling pathways, such as PTEN , PDCD4 , KBTBD7 , NOS3 , STRN , and Spry-1 . This review provides insights into the future advancement of safe miR-21 -based genetic therapy in the treatment of myocardial infarction.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  15. Lay MM, Karsani SA, Malek SN
    Int J Mol Sci, 2014 Jan 02;15(1):468-83.
    PMID: 24451128 DOI: 10.3390/ijms15010468
    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  16. Abdul Rahman SF, Xiang Lian BS, Mohana-Kumaran N
    Future Oncol, 2020 Oct;16(28):2235-2249.
    PMID: 32715755 DOI: 10.2217/fon-2020-0389
    The B-cell lymphoma 2 (BCL-2) anti-apoptotic proteins have become attractive therapeutic targets especially with the development of BH3-mimetics which selectively target these proteins. However, it is important to note that expression levels of the anti-apoptotic proteins and their relevance in inhibiting apoptosis varies between different cell lineages. This addiction to certain anti-apoptotic proteins for survival, can be determined with various techniques and targeted effectively with selective BH3-mimetics. Studies have highlighted that anti-apoptotic proteins BCL-XL and MCL-1 are crucial for cervical cancer cell survival. Co-targeting BCL-XL and MCL-1 with selective BH3-mimetics yielded promising results in cervical cancer cell lines. In this review, we focus on the expression levels of the anti-apoptotic proteins in cervical cancer tissues and how to possibly target them with BH3-mimetics.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  17. Mohd Azamai ES, Sulaiman S, Mohd Habib SH, Looi ML, Das S, Abdul Hamid NA, et al.
    J Zhejiang Univ Sci B, 2009 Jan;10(1):14-21.
    PMID: 19198018 DOI: 10.1631/jzus.B0820168
    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatocytes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism*
  18. Wong CP, Seki A, Horiguchi K, Shoji T, Arai T, Nugroho AE, et al.
    J Nat Prod, 2015 Jul 24;78(7):1656-62.
    PMID: 26176165 DOI: 10.1021/acs.jnatprod.5b00258
    We have previously reported that bisleuconothine A (Bis-A), a novel bisindole alkaloid isolated from Leuconotis griffithii, showed cytostatic activity in several cell lines. In this report, the mechanism of Bis-A-induced cytostatic activity was investigated in detail using A549 cells. Bis-A did not cause apoptosis, as indicated by analysis of annexin V and propidium iodide staining. Expression of all tested apoptosis-related proteins was also unaffected by Bis-A treatment. Bis-A was found to increase LC3 lipidation in MCF7 cells as well as A549 cells, suggesting that Bis-A cytostatic activity may be due to induction of autophagy. Subsequent investigation via Western blotting and immunofluorescence staining indicated that Bis-A induced formation but prevented degradation of autophagosomes. Mechanistic studies showed that Bis-A down-regulated phosphorylation of protein kinase B (AKT) and its downstream kinase, PRAS40, which is an mTOR repressor. Moreover, phosphorylation of p70S6K, an mTOR-dependent kinase, was also down-regulated. Down-regulation of these kinases suggests that the increase in LC3 lipidation may be due to mTOR deactivation. Thus, the cytostatic activity shown by Bis-A may be attributed to its induction of autophagosome formation. The Bis-A-induced autophagosome formation was suggested to be caused by its interference with the AKT-mTOR signaling pathway.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  19. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism*
  20. Lee ST, Wong PF, He H, Hooper JD, Mustafa MR
    PLoS One, 2013;8(2):e57708.
    PMID: 23437404 DOI: 10.1371/journal.pone.0057708
    Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links