Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al.
    Comput Biol Med, 2017 10 01;89:389-396.
    PMID: 28869899 DOI: 10.1016/j.compbiomed.2017.08.022
    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.
    Matched MeSH terms: Arrhythmias, Cardiac/diagnosis; Arrhythmias, Cardiac/physiopathology*
  2. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
    Matched MeSH terms: Arrhythmias, Cardiac/diagnosis
  3. Afzal MR, Daoud EG, Cunnane R, Mulpuru SK, Koay A, Hussain A, et al.
    Heart Rhythm, 2018 06;15(6):841-846.
    PMID: 29427820 DOI: 10.1016/j.hrthm.2018.02.008
    BACKGROUND: Experience with retrieval of the Micra transcatheter pacing system (TPS) is limited because of its relatively newer technology. Although abandonment of the TPS at end of life is recommended, certain situations such as endovascular infection or device embolization warrant retrieval.

    OBJECTIVE: The purpose of this study was to report the worldwide experience with successful retrieval of the Micra TPS.

    METHODS: A list of all successful retrievals of the currently available leadless pacemakers (LPs) was obtained from the manufacturer of Micra TPS. Pertinent details of retrieval, such as indication, days postimplantation, equipment used, complications, and postretrieval management, were obtained from the database collected by the manufacturer. Other procedural details were obtained directly from the operators at each participating site.

    RESULTS: Data from the manufacturer consisted of 40 successful retrievals of the Micra TPS. Operators for 29 retrievals (73%) provided the consent and procedural details. Of the 29 retrievals, 11 patients underwent retrieval during the initial procedure (immediate retrieval); the other 18 patients underwent retrieval during a separate procedure (delayed retrieval). Median duration before delayed retrieval was 46 days (range 1-95 days). The most common reason for immediate retrieval was elevated pacing threshold after tether removal. The most common reasons for delayed retrieval included elevated pacing threshold at follow-up, endovascular infection, and need for transvenous device. Mean procedure duration was 63.11 ± 56 minutes. All retrievals involved snaring via a Micra TPS delivery catheter or steerable sheath. No serious complications occurred during the reported retrievals.

    CONCLUSION: Early retrieval of the Micra TPS is feasible and safe.

    Matched MeSH terms: Arrhythmias, Cardiac/therapy*
  4. Agarwal A, Vyas S, Kumar R
    Malays Fam Physician, 2015;10(3):35-7.
    PMID: 27570607
    Wellen's syndrome is a pre-infarction stage of coronary artery disease characterised by predefined clinical and electrocardiographic (ECG) criteria of a subgroup of patients with myocardial ischaemia. Early recognition and appropriate intervention of this syndrome carry significant diagnostic and prognostic value. We report this unusual syndrome in an elderly man who presented with recurrent angina and characteristic ECG changes as T-waves inversion in the precordial leads, especially in V2-V6 during pain-free periods and ECG obtained during episodes of pain demonstrating upright T-waves with possible elevated ST segments from V1-V4. Cardiac enzymes were positive and coronary angiography revealed critical stenosis in the proximal left anterior descending artery. It is important to timely identify this condition and intervene appropriately as these patients may develop extensive myocardial infarction that carries a significant morbidity and mortality.
    Matched MeSH terms: Arrhythmias, Cardiac
  5. Ahmad Murtazam ZA
    Family Physician, 1992;4:10-13.
    Matched MeSH terms: Arrhythmias, Cardiac
  6. Ahmad S, Valli H, Edling CE, Grace AA, Jeevaratnam K, Huang CL
    Pflugers Arch., 2017 Dec;469(12):1579-1590.
    PMID: 28821956 DOI: 10.1007/s00424-017-2054-3
    A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator-activated receptor-γ coactivator-1β (Pgc-1β), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (> 52 week), wild-type (WT) and Pgc-1β -/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1β -/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1β -/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1β -/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to those in non-arrhythmic hearts. APD restitution analysis showed that Pgc-1β -/- and WT hearts showed similar limiting gradients. However, Pgc-1β -/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1β -/- hearts. Pgc-1β -/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.
    Matched MeSH terms: Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/physiopathology
  7. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J Cell Physiol, 2019 Apr;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/physiopathology
  8. Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL
    Mech Ageing Dev, 2018 Jul;173:92-103.
    PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004
    INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

    MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

    RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/pathology; Arrhythmias, Cardiac/physiopathology
  9. Ahmad, N. H., Tan, T. L.
    Medicine & Health, 2017;12(2):329-334.
    MyJurnal
    Mild hyperkalaemia does not typically cause cardiac symptoms. However, for an elderly patient on atrio-ventricular (AV) nodal blocker, even mild hyperkalaemia may result in disastrous outcome. We report a case of persistent bradyarrythmia caused by iatrogenic hyperkalaemia in a patient who had concomitant use of AV nodal medication. An 81-year-old lady with multiple comorbidities and a long list of medications presented with symptomatic bradyarrhythmia. She, in fact, had two AV nodal blockers in her prescription, a beta-blocker and amiodarone. Her potassium level was found to be mildly elevated due to acute renal failure. She remained bradycardic despite initial treatment and was subsequently dependant on intravenous isoproterenol until her renal function improved. This case highlights the different threshold for manifestation of hyperkalaemic symptoms in a growing group of patients: elderly patients with multiple comorbidities and polypharmacy.
    Keywords: bradyarrythmia, bradycardia, elderly, hyperkalaemia, polypharmacy
    Matched MeSH terms: Arrhythmias, Cardiac*
  10. Atrah AB, Ab-Rahman MS, Salleh H, Nuawi MZ, Mohd Nor MJ, Jamaludin NB
    Micromachines (Basel), 2017 Jul 21;8(7).
    PMID: 30400418 DOI: 10.3390/mi8070227
    This study presents the creation of a Karman vortex for a fluttering electromagnetic energy harvester device using a cylinder. The effects of two parameters, which are the diameter and the position of the cylinder, were investigated on the Karman vortex profile and the amplitude of the fluttering belt, respectively. A simulation was conducted to determine the effect of the creation of the Karman vortex, and an experiment was performed to identify influence of the position of the cylinder on the fluttering belt amplitude. The results demonstrated that vortex-induced vibration occurred at the frequency of the first natural mode for the belt at 3 cm and 10 cm for the diameter and position of the cylinder, respectively. Under such configuration, an electromagnetic energy harvester was attached and vibrated via the fluttering belt inside the turbulent boundary layers. This vibration provides a measured output voltage and can be used in wireless sensors.
    Matched MeSH terms: Arrhythmias, Cardiac
  11. Benjamin Ng Han Sim
    MyJurnal
    Phasic ECG voltage changes or electrical alternans is a well-described ECG changes seen in the pericardial effusion and cardiac tamponade. Popular as once believed, this ECG features are no longer considered pathognomonic for pericardial effusion and cardiac tamponade. Electric alternans is observed in pneumothorax especially left-sided pneumothorax. This is a case of a 41-year-old man who presented with chest pain and breathlessness to the emergency department. Assessment in the emergency unit revealed an obvious distress man with a respiratory rate of 60 breaths/min with cyanosis There were generalised rhonchi and prolonged expiratory breath sound appreciated. Chest X-ray (CXR) was done and diagnosed to have left tension pneumothorax. Initial electrocardiogram (ECG) showed electrical alternans in all leads. He was intubated for respiratory distress followed by chest tube insertion. His initial ECG findings resolved after treatment of the tension pneumothorax. Doctors need to evaluate the cardiac findings along with respiratory findings.
    Matched MeSH terms: Arrhythmias, Cardiac
  12. Chadda KR, Jeevaratnam K, Lei M, Huang CL
    Pflugers Arch., 2017 06;469(5-6):629-641.
    PMID: 28265756 DOI: 10.1007/s00424-017-1959-1
    Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+ current components play critical parts. Early peak, Na+ currents (I Na) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+ currents (I Na-L) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of I Na-L can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+ conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+ channel abnormalities increasing I Na-L are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate I Na-L. These include (1) overlaps between steady-state activation and inactivation increasing window current, (2) kinetic deficiencies in Na+ channel inactivation leading to bursting phenomena associated with repetitive channel openings and (3) non-equilibrium gating processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased I Na-L.
    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*
  13. Chin K, Singham KT, Anuar M
    Med J Malaysia, 1985 Mar;40(1):28-30.
    PMID: 3831729
    The complications of temporary transvenous endocardial pacing as performed in the University Hospital Kuala Lumpur, from 1971 to 1979 were reviewed. 125 temporary pacings were performed in 111 patients. Different routes of temporary pacing
    were used: namely percutaneous subclavian vein and femoral vein puncture and acutecubital vein cutdown. The latter route was associated with a higher incidence of dislodgement and infection. Other common complications encountered were ventricular arrhythymia and generator failure.
    Matched MeSH terms: Arrhythmias, Cardiac/etiology*
  14. Chodankar, Nagesh N., May, Honey Ohn, D’Souza, Urban John Arnold
    MyJurnal
    Electrocardiogram (ECG) is a record of electrical activity of the heart. PQRST waves represent
    the electrical activities of atria and ventricles. A complete three-dimensional electrical activity is
    possible to be recorded using a 12-lead ECG. The normal and different routinely-met clinical ECG
    are elaborated and discussed. This routine, normal and abnormal ECG, like arrhythmias and heart
    block records as well as their clinical notes shall be educational information for the medical students.
    Matched MeSH terms: Arrhythmias, Cardiac
  15. Chuah JS, Wong WL, Bakin S, Lim RZM, Lee EP, Tan JH
    Ann Med Surg (Lond), 2021 May;65:102294.
    PMID: 33948169 DOI: 10.1016/j.amsu.2021.102294
    Introduction and importance: A totally implantable venous access device (TIVAD), also referred to as 'chemoport', is frequently used for oncology patients. Chemoport insertion via the subclavian vein access may compress the catheter between the first rib and the clavicle, resulting in pinch-off syndrome (POS). The sequela includes catheter transection and subsequent embolization. It is a rare complication with incidence reported to be 1.1-5.0% and can lead to a devastating outcomes.

    Case presentation: 50-year-old male had his chemoport inserted for adjuvant chemotherapy 3 years ago. During the removal, remaining half of the distal catheter was not found. There was no difficulties during the removal. Chest xray revealed that the fractured catheter had embolized to the right ventricle. Further history taking, he did experienced occasional palpitation and chest discomfort for the past six months. Electrocardiogram and cardiac enzymes were normal. Urgent removal of the fractured catheter via the percutaneous endovascular approach, under fluoroscopic guidance by an experience interventional radiologist was done. The procedure was successful without any complication. Patient made an uneventful recovery. He was discharged the following day, and was well during his 3rd month follow up.

    Conclusion: Early detection and preventive measures can be done to prevent pinch-off syndrome. Unrecognized POS can result in fatal complications such as cardiac arrhythmia and septic embolization. Retrieval via the percutaneous endovascular approach provide excellent outcome in the case of embolized fractured catheter.

    Matched MeSH terms: Arrhythmias, Cardiac
  16. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al.
    Circ Arrhythm Electrophysiol, 2021 03;14(3):e009458.
    PMID: 33554620 DOI: 10.1161/CIRCEP.120.009458
    [Figure: see text].
    Matched MeSH terms: Arrhythmias, Cardiac/mortality; Arrhythmias, Cardiac/epidemiology*; Arrhythmias, Cardiac/physiopathology; Arrhythmias, Cardiac/therapy
  17. Dharmalingam SK, Taek YS, Mahadev V
    Med J Malaya, 1970 Sep;25(1):3-7.
    PMID: 4249493
    Matched MeSH terms: Arrhythmias, Cardiac/etiology
  18. Drakaki A, Habib M, Sweeney AT
    Am J Med, 2009 Dec;122(12):e5-6.
    PMID: 19958876 DOI: 10.1016/j.amjmed.2009.06.016
    Hypokalemic thyrotoxic periodic paralysis is a potentially life-threatening complication of hyperthyroidism, defined by 3 characteristic features: thyrotoxicosis, hypokalemia, and acute painless muscle weakness. In this case, a 25-year-old Malaysian man presented with acute, painless lower extremity weakness immediately after a meal. His associated symptoms included palpitations, tremor, and anxiety. He also reported a 30-pound unintentional weight loss over the previous 18 months, dyspnea on exertion, and insomnia.
    Matched MeSH terms: Arrhythmias, Cardiac/drug therapy; Arrhythmias, Cardiac/etiology
  19. Duray GZ, Ritter P, El-Chami M, Narasimhan C, Omar R, Tolosana JM, et al.
    Heart Rhythm, 2017 05;14(5):702-709.
    PMID: 28192207 DOI: 10.1016/j.hrthm.2017.01.035
    BACKGROUND: Early performance of the Micra transcatheter pacemaker from the global clinical trial reported a 99.2% implant success rate, low and stable pacing capture thresholds, and a low (4.0%) rate of major complications up to 6 months.

    OBJECTIVE: The purpose of this report was to describe the prespecified long-term safety objective of Micra at 12 months and electrical performance through 24 months.

    METHODS: The Micra Transcatheter Pacing Study was a prospective single-arm study designed to assess the safety and efficacy of the Micra VVIR leadless/intracardiac pacemaker. Enrolled patients met class I or II guideline recommendations for de novo ventricular pacing. The long-term safety objective was freedom from a system- or procedure-related major complication at 12 months. A predefined historical control group of 2667 patients with transvenous pacemakers was used to compare major complication rates.

    RESULTS: The long-term safety objective was achieved with a freedom from major complication rate of 96.0% at 12 months (95% confidence interval 94.2%-97.2%; P < .0001 vs performance goal). The risk of major complications for patients with Micra (N = 726) was 48% lower than that for patients with transvenous systems through 12 months postimplant (hazard ratio 0.52; 95% confidence interval 0.35-0.77; P = .001). Across subgroups of age, sex, and comorbidities, Micra reduced the risk of major complications compared to transvenous systems. Electrical performance was excellent through 24 months, with a projected battery longevity of 12.1 years.

    CONCLUSION: Long-term performance of the Micra transcatheter pacemaker remains consistent with previously reported data. Few patients experienced major complications through 12 months of follow-up, and all patient subgroups benefited as compared to transvenous pacemaker historical control group.

    Matched MeSH terms: Arrhythmias, Cardiac/therapy*
  20. Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Grace AA, et al.
    Biosci Rep, 2019 04 30;39(4).
    PMID: 30914453 DOI: 10.1042/BSR20190127
    Mice deficient in mitochondrial promoter peroxisome proliferator activated receptor-γ co-activator-1β (Pgc-1β-/- ) is a valuable model for metabolic diseases and has been found to present with several pathologies including ventricular arrhythmia. In the present study, our aim was to shed light on the molecular mechanisms behind the observed arrhythmic substrate by studying how the expression of selected genes critical for cardiac function differs in wild-type (WT) compared with Pgc-1β knockout mice and young compared with aged mice. We found that a clear majority of genes are down-regulated in the Pgc-1β-/- ventricular tissue compared with the WT. Although most individual genes are not significantly differentially expressed, a pattern is apparent when the genes are grouped according to their functional properties. Genes encoding proteins relating to ATPase activity, potassium ion channels relating to repolarisation and resting membrane potential, and genes encoding proteins in the cAMP pathway are found to be significantly down-regulated in the Pgc-1β deficient mice. On the contrary, the pacemaker channel genes Hcn3 and Hcn4 are up-regulated in subsets of the Pgc-1β deficient tissue. Furthermore, we found that with age, especially in the Pgc-1β-/- genotype, most genes are up-regulated including genes relating to the resting membrane potential, calcium homeostasis, the cAMP pathway, and most of the tested adrenoceptors. In conclusion, we here demonstrate how a complex pattern of many modest changes at gene level may explain major functional differences of the action potential related to ageing and mitochondrial dysfunction.
    Matched MeSH terms: Arrhythmias, Cardiac/metabolism; Arrhythmias, Cardiac/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links