Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Yung-Hung RL, Ismail A, Lim TS, Choong YS
    Biochem Biophys Res Commun, 2011 Nov 18;415(2):229-34.
    PMID: 21982766 DOI: 10.1016/j.bbrc.2011.09.116
    Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/chemistry*
  2. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal Chem, 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics
  3. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics
  4. Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, et al.
    Microbiologyopen, 2017 12;6(6).
    PMID: 29055967 DOI: 10.1002/mbo3.513
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/metabolism; Bacterial Outer Membrane Proteins/chemistry*
  5. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  6. Tay ST, Mokhtar AS, Low KC, Mohd Zain SN, Jeffery J, Abdul Aziz N, et al.
    Med Vet Entomol, 2014 Aug;28 Suppl 1:104-8.
    PMID: 25171613 DOI: 10.1111/mve.12075
    Rickettsioses are emerging zoonotic diseases reported worldwide. In spite of the serological evidence of spotted fever group rickettsioses in febrile patients in Malaysia, limited studies have been conducted to identify the animal reservoirs and vectors of rickettsioses. This study investigated the presence of rickettsiae in the tissue homogenates of 95 wild rats and 589 animal ectoparasites. Using PCR assays targeting the citrate synthase gene (gltA), rickettsial DNA was detected in the tissue homogenates of 13 (13.7%) wild rats. Sequence analysis of the gltA amplicons showed 98.6-100% similarity with those of Rickettsia honei/R. conorii/R. raoultii (Rickettsiales: Rickettsiaceae). Sequence analysis of outer membrane protein A gene (ompA) identified Rickettsia sp. TCM1 strain from two rats. No rickettsia was detected from Laelaps mites, Rhipicephalus sanguineus and Haemaphysalis bispinosa ticks, and Felicola subrostratus lice in this study. R. felis was identified from 32.2% of 177 Ctenocephalides felis fleas. Sequence analysis of the gltA amplicons revealed two genotypes of R. felis (Rf31 and RF2125) in the fleas. As wild rats and cat fleas play an important role in the enzoonotic maintenance of rickettsiae, control of rodent and flea populations may be able to reduce transmission of rickettsioses in the local setting.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics*
  7. Tan SY, Tan IK, Tan MF, Dutta A, Choo SW
    Sci Rep, 2016 10 31;6:36116.
    PMID: 27796355 DOI: 10.1038/srep36116
    On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/chemistry
  8. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/chemistry
  9. Sultana A, Tiash S
    J Control Release, 2021 04 10;332:233-244.
    PMID: 33561481 DOI: 10.1016/j.jconrel.2021.02.004
    E. coli mediated gene delivery faces a major drawback of low efficiency despite of being a safer alternative to viral vectors. This study showed a novel, simple and effective strategy to enhance invasive E. coli DH10B vector's efficiency in human epithelial cells. The bactofection efficiency of invasive E .coli vector was analyzed in nine cell lines. It demonstrated highest (16%) reporter gene (GFP) expression in cervical cells. Methods were employed to further enhance its efficiency by adding transfection reagents (trans-bactofection method) to promote entry into host cells, lysosomotropic reagents for escape from lysosomal degradation or antibiotics to lyse internalized bacteria. Increased bacterial entry, as elucidated from nil to 3% expression in liver cells, was obtained upon complexing bacteria with PULSin. Chloroquine mediated endosomal escape resulted in 7.2 folds increase whereas tetracycline addition to lyse internalized bacteria caused ≈90% of GFP in HeLa. Eventually, the combined effect of these three methods exhibited close to 100% GFP in cervical and remarkable increase of 138 folds in breast cells. This is the first study showing comparative study of vector's gene delivery ability in various epithelial cells of the human body with improving its delivery efficiency. These data demonstrated the potential of developed bactofection method to boost up the efficiency of other bacterial vectors also, which could further be used for effectual therapeutic gene delivery in human cells.
    Matched MeSH terms: Bacterial Outer Membrane Proteins
  10. Su YC, Wan KL, Mohamed R, Nathan S
    Vaccine, 2010 Jul 12;28(31):5005-11.
    PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022
    Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  11. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    J. Periodontol., 2002 Oct;73(10):1133-40.
    PMID: 12416770
    It has previously been suggested that CD4+ T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingivalis in CD4-depleted BALB/c mice immunized with P. gingivalis outer membrane proteins (OMP).
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology
  12. Shien Yeoh T, Yusof Hazrina H, Bukari BA, Tang TH, Citartan M
    Bioorg Med Chem, 2023 Mar 01;81:117186.
    PMID: 36812779 DOI: 10.1016/j.bmc.2023.117186
    Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira. The major hurdle of the diagnosis of Leptospirosis lies in the issues associated with current methods of detection, which are time-consuming, tedious and the need for sophisticated, special equipments. Restrategizing the diagnostics of Leptospirosis may involve considerations of the direct detection of the outer membrane protein, which can be faster, cost-saving and require fewer equipments. One such promising marker is LipL32, which is an antigen with high amino acid sequence conservation among all the pathogenic strains. In this study, we endeavored to isolate an aptamer against LipL32 protein via a modified SELEX strategy known as tripartite-hybrid SELEX, based on 3 different partitioning strategies. In this study, we also demonstrated the deconvolution of the candidate aptamers by using in-house Python-aided unbiased data sorting in examining multiple parameters to isolate potent aptamers. We have successfully generated an RNA aptamer against LipL32 of Leptospira, LepRapt-11, which is applicable in a simple direct ELASA for the detection of LipL32. LepRapt-11 can be a promising molecular recognition element for the diagnosis of leptospirosis by targeting LipL32.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/metabolism
  13. Sabri MY, Zamri-Saad M, Mutalib AR, Israf DA, Muniandy N
    Vet Microbiol, 2000 Apr 04;73(1):13-23.
    PMID: 10731614
    The outer membrane proteins (OMP) were extracted from the P. haemolytica A2, A7 and A9 to determine their potential as immunogens and their capability for cross-protection. Sixty lambs of approximately 9 months old were divided into four main groups. Animals in Group 1 were vaccinated with 2ml vaccine containing 100microg/ml of the outer membrane proteins of P. haemolytica A2. Animals in Group 2 were similarly vaccinated with the OMPs of P. haemolytica A7 while Group 3 with OMPs of P. haemolytica A9. Animals in Group 4 were unvaccinated control. During the course of the study, serum was collected to evaluate the antibody levels toward each OMP. There appeared to be good immune responses. However, high antibody levels did not necessarily result in good protection of the animals, particularly against cross-infection with P. haemolytica A9 in animals vaccinated with the OMPs of P. haemolytica A2. It seemed that the antibody responses were more specific toward the homologous challenge but generally did not cross-protect against heterologous serotype challenge. However, the OMPs of P. haemolytica A7 produced good in vivo cross-protection and excellent correlations when good antibody responses against all serotypes led to successful reductions of the extent of lung lesions following homologous and heterologous challenge exposures. Thus, the OMPs of P. haemolytica A7 was effective in protecting animals against homologous and heterologous infection by live P. haemolytica A2, A7 and A9.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*
  14. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology
  15. Ngeow YF, Hema V, Zakaria M, Lee CH, Ramachandran S
    Malays J Pathol, 1997 Dec;19(2):127-32.
    PMID: 10879253
    First-void urine samples collected from sexually transmitted diseases (STD) clinic patients were examined by a nested polymerase chain reaction (PCR) and a commercial enzyme immunoassay (IDEIA Chlamydia) for the diagnosis of Chlamydia trachomatis urethritis or cervicitis. The primers for the PCR amplified a target in the major outer membrane protein (MOMP) gene in C trachomatis while the IDEIA detected genus-specific chlamydial lipopolysaccharide. Discrepant results were resolved by retesting urine specimens with a second (plasmid-based) PCR and taking urethral or endocervical swab results into consideration. For 231 men (chlamydial prevalence 20.4%), the sensitivity, specificity, positive and negative predictive values were 59.6%, 99.5%, 96.6% and 90.6% for urine IDEIA, 68.1%, 99.5%, 97% and 92.4% for urethral swab IDEIA and 97.9%, 99.5%, 97.9% and 99.5% for urine PCR. The corresponding rates for 66 women (chlamydial prevalence 54.6%) were 19.4%, 100%, 100% and 50.8% for urine IDEIA, 86.1%, 96.7%, 96.9% and 85.3% for endocervical swab IDEIA and 91.7%, 93.3%, 94.3% and 90.3% for urine PCR. Hence, in a high prevalence population, the urine IDEIA was a suitable alternative to the male urethral swab IDEIA but significantly less sensitive than the endocervical swab IDEIA. The urine PCR was, however, much more sensitive than the urine IDEIA for both men and women and could replace the endocervical swab IDEIA for the diagnosis of chlamydial cervicitis.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/analysis
  16. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics
  17. Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, et al.
    Int J Biol Macromol, 2021 Jan 31;168:289-300.
    PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062
    Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/genetics; Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/isolation & purification; Bacterial Outer Membrane Proteins/metabolism
  18. Leong SW, Lim TS, Tye GJ, Ismail A, Aziah I, Choong YS
    J Biol Phys, 2014 Sep;40(4):387-400.
    PMID: 25011632 DOI: 10.1007/s10867-014-9357-9
    In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/metabolism*; Bacterial Outer Membrane Proteins/chemistry*
  19. Leong SW, Lim TS, Ismail A, Choong YS
    J. Mol. Recognit., 2018 05;31(5):e2695.
    PMID: 29230887 DOI: 10.1002/jmr.2695
    With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/immunology*; Bacterial Outer Membrane Proteins/chemistry
  20. Lau KL, Ong EB, Zainudin ZF, Samian MR, Ismail A, Najimudin N
    J Gen Appl Microbiol, 2013;59(3):239-44.
    PMID: 23863294
    Matched MeSH terms: Bacterial Outer Membrane Proteins/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links