OBJECTIVE: To evaluate the inhibitory effects of PEITC against benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA and apoprotein levels.
MATERIALS AND METHODS: Precision cut rat liver slices were treated with benzo[a]pyrene at 1 and 5 μM in the presence of PEITC (1-25 μM) for 24 hours, followed by determination of CYP1A1 mRNA and apoprotein levels using quantitative polymerase chain reaction and immunoblotting.
RESULTS: Findings revealed that PEITC inhibited benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA in a dose-dependent manner as well as the apoprotein levels of CYP1A.
CONCLUSIONS: It was demonstrated that PEITC can directly inhibit the bioactivation of benzo[a]pyrene, indicating chemopreventive potential.
PURPOSE: Investigation of the in vivo chemopreventive has the potential of nano Z. officinale Roscoe (Zo-NPs) in breast cancer.
STUDY DESIGN: Using female Mus musculus Balb/c induced with benzo[α]pyrene, the chemopreventive action of Z. officinale Roscoe. nanoencapsulated using κ-carrageenan was assessed.
RESULTS: Z. officinale Roscoe Extract. contains 58 compounds, with the main component being [6]-gingerol with [6]-gingerol content being 697.65 ± 8.52 mg/g extract. Nanoencapsulation of Z. officinale Roscoe. has been successfully prepared with a particle size of 483.30 ± 11.23 nm. Zo-NPs are generally resistant to pH, temperature, and salt content variations. Compared to group C1, which underwent ductular dilatation, the administration of Zo-NPs (group T2) to female Mus musculus Balb/c, induced by benzo[α]pyrene, revealed no histological alterations in breast tissue. Moreover, administering Zo-NPs can raise blood serum levels of CAT, GSH, and SOD. In addition, it showed a greater ability to lower TNF-α levels than the T1 group, which received Z. officinale Roscoe extract. (Zo).