Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Zulfiqar M, Rohazly I, Rahmah M
    Biomed Imaging Interv J, 2011 Apr;7(2):e14.
    PMID: 22291859 MyJurnal DOI: 10.2349/biij.7.2.e14
    PURPOSE: TO DETERMINE: (i) the mammographic parenchymal patterns in Malaysian women and whether the breasts are dense on mammogram; (ii) the effect of age on breast density; (iii) the effect of parity on breast density; (iv) the difference in breast parenchymal patterns among the major races of women in Malaysia.
    METHODS: This was a descriptive cross-sectional study of 1,784 patients (981 Malays, 571 Chinese, 214 Indians and 18 others) who had undergone mammography during the 1-year study period. Majority of women (41.7%) were aged between 51 and 60 years and majority (43%) had 3-4 children. The Tabar classification (Pattern I - V) was used to evaluate breast parenchymal patterns on mammogram. Tabar Pattern I was further divided into 3 sub-groups (Pattern IA, IB, and IC). The different patterns were then grouped into dense (IB, IC, IV, V) and not dense (IA, II, III) breasts. The SPSS package was used for statistical analysis.
    RESULTS: Majority (59%) of Malaysian women had dense breasts (Pattern IB 29%, IC 20%, IV 5%, and V 5%) and 41% did not have dense breasts (Pattern IA 28%, II 6%, and III 7%). Age and parity were inversely related to breast density (p < 0.0001). Chinese women (65.7%) had the highest percentage of dense breasts (p = 0.69, odds ratio = 1.22), followed by the Indians (57.2%) and the Malays (50.5%).
    CONCLUSION: Majority of women had dense breasts but Pattern IV, which has been associated with increased risk of breast cancer, was seen in only 5% of the women. The breast density reduced steadily with increasing age and parity. There was no statistically significant difference in breast density in the three main races.
    KEYWORDS: Mammography; breast density; breast parenchymal patterns
    Matched MeSH terms: Breast Density
  2. Tan KP, Mohamad Azlan Z, Rumaisa MP, Siti Aisyah Murni MR, Radhika S, Nurismah MI, et al.
    Med J Malaysia, 2014 Apr;69(2):79-85.
    PMID: 25241817 MyJurnal
    AIM: This study was performed to determine the accuracy of ultrasound (USG) as compared to mammography (MMG) in detecting breast cancer.

    METHODS: This was a review of patients who had breast imaging and biopsy during an 18-month period. Details of patients who underwent breast biopsy were obtained from the department biopsy record books and imaging request forms. Details of breast imaging findings and histology of lesions biopsied were obtained from the hospital Integrated Radiology Information System (IRIS). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of USG and MMG were calculated with histology as the gold standard.

    RESULTS: A total of 326 breast lesions were biopsied. Histology results revealed the presence of 74 breast cancers and 252 benign lesions. USG had a sensitivity of 82%, specificity of 84%, PPV = 60%, NPV = 94% and an accuracy of 84%. MMG had a sensitivity of 49%, specificity of 89%, PPV = 53%, NPV = 88% and an accuracy of 81%. A total of 161 lesions which were imaged with both modalities were analyzed to determine the significance in the differences in sensitivity and specificity between USG and MMG. Sensitivity of USG (75%) was significantly higher than sensitivity of MMG (44%) (X(2)1=6.905, p=0.014). Specificity of MMG (91%) was significantly higher than specificity of USG (79%) (X(2)1=27.114, p<0.001). Compared with MMG, the sensitivity of USG was 50% (95% CI 10%-90%) higher in women aged less than 50 years (X(2)1=0.000, p=1.000) and 27% (95% CI 19%-36%) higher in women aged 50 years and above (X(2)1=5.866, p=0.015). Compared with MMG, the sensitivity of USG was 40% (95% CI 10%-70%) higher in women with dense breasts (X(2)1=0.234, p=0.628) and 27% (95% CI 9%-46%) higher in women with non-dense breasts (X(2)1=4.585, p=0.032).

    CONCLUSION: Accuracy of USG was higher compared with MMG. USG was more sensitive than MMG regardless of age group. However, MMG was more specific in those aged 50 years and older. USG was more sensitive and MMG was more specific regardless of breast density. In this study, 20% of breast cancers detected were occult on MMG and seen only on USG.
    Matched MeSH terms: Breast Density
  3. Mariapun S, Ho WK, Kang PC, Li J, Lindström S, Yip CH, et al.
    Cancer Epidemiol Biomarkers Prev, 2016 Feb;25(2):327-33.
    PMID: 26677210 DOI: 10.1158/1055-9965.EPI-15-0746
    Mammographic density is an established risk factor for breast cancer and has a strong heritable component. Genome-wide association studies (GWAS) for mammographic density conducted in women of European descent have identified several genetic associations, but none of the studies have been tested in Asians. We sought to investigate whether these genetic loci, and loci associated with breast cancer risk and breast size, are associated with mammographic density in an Asian cohort.
    Matched MeSH terms: Breast Density
  4. McCormack VA, Burton A, dos-Santos-Silva I, Hipwell JH, Dickens C, Salem D, et al.
    Cancer Epidemiol, 2016 Feb;40:141-51.
    PMID: 26724463 DOI: 10.1016/j.canep.2015.11.015
    Mammographic density (MD) is a quantitative trait, measurable in all women, and is among the strongest markers of breast cancer risk. The population-based epidemiology of MD has revealed genetic, lifestyle and societal/environmental determinants, but studies have largely been conducted in women with similar westernized lifestyles living in countries with high breast cancer incidence rates. To benefit from the heterogeneity in risk factors and their combinations worldwide, we created an International Consortium on Mammographic Density (ICMD) to pool individual-level epidemiological and MD data from general population studies worldwide. ICMD aims to characterize determinants of MD more precisely, and to evaluate whether they are consistent across populations worldwide. We included 11755 women, from 27 studies in 22 countries, on whom individual-level risk factor data were pooled and original mammographic images were re-read for ICMD to obtain standardized comparable MD data. In the present article, we present (i) the rationale for this consortium; (ii) characteristics of the studies and women included; and (iii) study methodology to obtain comparable MD data from original re-read films. We also highlight the risk factor heterogeneity captured by such an effort and, thus, the unique insight the pooled study promises to offer through wider exposure ranges, different confounding structures and enhanced power for sub-group analyses.
    Matched MeSH terms: Breast Density
  5. Wahab AA, Salim MI, Ahamat MA, Manaf NA, Yunus J, Lai KW
    Med Biol Eng Comput, 2016 Sep;54(9):1363-73.
    PMID: 26463520 DOI: 10.1007/s11517-015-1403-7
    Breast cancer is the most common cancer among women globally, and the number of young women diagnosed with this disease is gradually increasing over the years. Mammography is the current gold-standard technique although it is known to be less sensitive in detecting tumors in woman with dense breast tissue. Detecting an early-stage tumor in young women is very crucial for better survival chance and treatment. The thermography technique has the capability to provide an additional functional information on physiological changes to mammography by describing thermal and vascular properties of the tissues. Studies on breast thermography have been carried out to improve the accuracy level of the thermography technique in various perspectives. However, the limitation of gathering women affected by cancer in different age groups had necessitated this comprehensive study which is aimed to investigate the effect of different density levels on the surface temperature distribution profile of the breast models. These models, namely extremely dense (ED), heterogeneously dense (HD), scattered fibroglandular (SF), and predominantly fatty (PF), with embedded tumors were developed using the finite element method. A conventional Pennes' bioheat model was used to perform the numerical simulation on different case studies, and the results obtained were then compared using a hypothesis statistical analysis method to the reference breast model developed previously. The results obtained show that ED, SF, and PF breast models had significant mean differences in surface temperature profile with a p value <0.025, while HD breast model data pair agreed with the null hypothesis formulated due to the comparable tissue composition percentage to the reference model. The findings suggested that various breast density levels should be considered as a contributing factor to the surface thermal distribution profile alteration in both breast cancer detection and analysis when using the thermography technique.
    Matched MeSH terms: Breast Density*
  6. Lau S, Ng KH, Abdul Aziz YF
    Br J Radiol, 2016 Oct;89(1066):20160258.
    PMID: 27452264 DOI: 10.1259/bjr.20160258
    OBJECTIVE: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise.

    METHODS: 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images.

    RESULTS: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p 

    Matched MeSH terms: Breast Density*
  7. Burton A, Byrnes G, Stone J, Tamimi RM, Heine J, Vachon C, et al.
    Breast Cancer Res, 2016 12 19;18(1):130.
    PMID: 27993168
    BACKGROUND: Inter-women and intra-women comparisons of mammographic density (MD) are needed in research, clinical and screening applications; however, MD measurements are influenced by mammography modality (screen film/digital) and digital image format (raw/processed). We aimed to examine differences in MD assessed on these image types.

    METHODS: We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric (GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441), with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a random intercept for woman, to estimate processed-raw MD differences.

    RESULTS: Breast area did not differ in processed images compared with that in raw images, but the percent MD was higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI: 0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE 0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: -0.10, 0.23)). Additionally, within each system, reader-specific differences varied in magnitude and direction (p 

    Matched MeSH terms: Breast Density*
  8. Rajaram N, Mariapun S, Eriksson M, Tapia J, Kwan PY, Ho WK, et al.
    Breast Cancer Res Treat, 2017 01;161(2):353-362.
    PMID: 27864652 DOI: 10.1007/s10549-016-4054-y
    PURPOSE: Mammographic density is a measurable and modifiable biomarker that is strongly and independently associated with breast cancer risk. Paradoxically, although Asian women have lower risk of breast cancer, studies of minority Asian women in predominantly Caucasian populations have found that Asian women have higher percent density. In this cross-sectional study, we compared the distribution of mammographic density for a matched cohort of Asian women from Malaysia and Caucasian women from Sweden, and determined if variations in mammographic density could be attributed to population differences in breast cancer risk factors.

    METHODS: Volumetric mammographic density was compared for 1501 Malaysian and 4501 Swedish healthy women, matched on age and body mass index. We used multivariable log-linear regression to determine the risk factors associated with mammographic density and mediation analysis to identify factors that account for differences in mammographic density between the two cohorts.

    RESULTS: Compared to Caucasian women, percent density was 2.0% higher among Asian women (p breast cancer may be accounted for by height, weight, and parity. Given that pre-menopausal Asian and Caucasian women have similar population risk to breast cancer but different dense volume, development of more appropriate biomarkers of risk in pre-menopausal women is required.

    Matched MeSH terms: Breast Density*
  9. Tan M, Aghaei F, Wang Y, Zheng B
    Phys Med Biol, 2017 01 21;62(2):358-376.
    PMID: 27997380 DOI: 10.1088/1361-6560/aa5081
    The purpose of this study is to evaluate a new method to improve performance of computer-aided detection (CAD) schemes of screening mammograms with two approaches. In the first approach, we developed a new case based CAD scheme using a set of optimally selected global mammographic density, texture, spiculation, and structural similarity features computed from all four full-field digital mammography images of the craniocaudal (CC) and mediolateral oblique (MLO) views by using a modified fast and accurate sequential floating forward selection feature selection algorithm. Selected features were then applied to a 'scoring fusion' artificial neural network classification scheme to produce a final case based risk score. In the second approach, we combined the case based risk score with the conventional lesion based scores of a conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from the CC and MLO views. The area under the receiver operating characteristic curve was AUC  =  0.793  ±  0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case based detection scores increased. Using the new adaptive cueing method, the region based and case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information can be derived by computing global mammographic density image features to improve CAD-cueing performance on the suspicious mammographic lesions.
    Matched MeSH terms: Breast Density
  10. Kumar SK, Trujillo PB, Ucros GR
    Med J Malaysia, 2017 04;72(2):138-140.
    PMID: 28473683
    Worldwide breast cancer remains as the most common malignancy in women and the numbers who form a subgroup with dense breast parenchyma are substantial. In addition to mammography, the adjuncts used for further evaluation of dense breasts have been anatomically based modalities such as ultrasound and magnetic resonance imaging. The practice of functionally based imaging of breasts is relatively new but has undergone rapid progress over the past few years with promising results. The value of positron emission mammography is demonstrated in patients with dense breasts and mammographically occult disease.
    Matched MeSH terms: Breast Density
  11. Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M, et al.
    PLoS Med, 2017 Jun;14(6):e1002335.
    PMID: 28666001 DOI: 10.1371/journal.pmed.1002335
    BACKGROUND: Mammographic density (MD) is one of the strongest breast cancer risk factors. Its age-related characteristics have been studied in women in western countries, but whether these associations apply to women worldwide is not known.

    METHODS AND FINDINGS: We examined cross-sectional differences in MD by age and menopausal status in over 11,000 breast-cancer-free women aged 35-85 years, from 40 ethnicity- and location-specific population groups across 22 countries in the International Consortium on Mammographic Density (ICMD). MD was read centrally using a quantitative method (Cumulus) and its square-root metrics were analysed using meta-analysis of group-level estimates and linear regression models of pooled data, adjusted for body mass index, reproductive factors, mammogram view, image type, and reader. In all, 4,534 women were premenopausal, and 6,481 postmenopausal, at the time of mammography. A large age-adjusted difference in percent MD (PD) between post- and premenopausal women was apparent (-0.46 cm [95% CI: -0.53, -0.39]) and appeared greater in women with lower breast cancer risk profiles; variation across population groups due to heterogeneity (I2) was 16.5%. Among premenopausal women, the √PD difference per 10-year increase in age was -0.24 cm (95% CI: -0.34, -0.14; I2 = 30%), reflecting a compositional change (lower dense area and higher non-dense area, with no difference in breast area). In postmenopausal women, the corresponding difference in √PD (-0.38 cm [95% CI: -0.44, -0.33]; I2 = 30%) was additionally driven by increasing breast area. The study is limited by different mammography systems and its cross-sectional rather than longitudinal nature.

    CONCLUSIONS: Declines in MD with increasing age are present premenopausally, continue postmenopausally, and are most pronounced over the menopausal transition. These effects were highly consistent across diverse groups of women worldwide, suggesting that they result from an intrinsic biological, likely hormonal, mechanism common to women. If cumulative breast density is a key determinant of breast cancer risk, younger ages may be the more critical periods for lifestyle modifications aimed at breast density and breast cancer risk reduction.

    Matched MeSH terms: Breast Density*
  12. Lau S, Abdul Aziz YF, Ng KH
    PLoS One, 2017;12(4):e0175781.
    PMID: 28419125 DOI: 10.1371/journal.pone.0175781
    OBJECTIVES: To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study.

    METHODS: We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs.

    RESULTS: Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p<0.0001). Compression parameters including compression force, compression pressure, CBT and breast contact area were widely variable between [relative standard deviation (RSD)≥21.0%] and within (p<0.0001) Asian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05).

    CONCLUSIONS: Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

    Matched MeSH terms: Breast Density
  13. Norhayati Mohd Zain, Kanaga, Kumari Chelliah, Vengkatha, Priya Seriramulu, Shantini Arasaratnam, Poh, Bee Koon
    Jurnal Sains Kesihatan Malaysia, 2017;15(22):137-144.
    MyJurnal
    Daily food intake of women may affect their bone health by altering their bone mineral density (BMD) as the lack of certain
    nutrients may affect bone integrity whilst, BMD also can be a predictor of breast cancer. To date, many studies have been
    conducted to discuss on association of BMD and mammographic breast density (MBD) and how both are related to breast
    cancer risks but no consideration has been made on dietary intake. Therefore, this study was designed to determine
    the association of dietary intake with BMD and other breast cancer risk factors. A cross-sectional study on 76 pre- and
    postmenopausal women above 40 years underwent mammogram screening and Dual Energy X-ray Absorptiometry (DEXA)
    was conducted in Hospital Kuala Lumpur (HKL) for the duration of 1 year. Purposive sampling method was used to choose
    the respondents. Women who are diagnosed with breast cancer and underwent cancer treatment were excluded from this
    study. DEXA unit (Hologic Discovery W, Hologic, Inc) were used to measure BMD at the femoral neck and lumbar spine in
    grams per centimetre squared (g/cm2
    ) and they were classified into normal and abnormal group based on the T-scores.
    The subjects were asked about their daily dietary pattern for a duration of three days using Diet History Questionnaire
    (DHQ). The mean of selected characteristics were compared between groups. Additionally, binary logistic regression was
    used to determine the association between diet intake with BMD and other risk factors of breast cancer. The total number
    of pre- and postmenopausal women who consented to participate in this study are equal. The mean age was 47.1 years
    and 54.9 years for premenopausal and postmenopausal women respectively. The results indicate only menopausal age of
    the women was statistically significant (p < 0.05). A number of 17% premenopausal and 9% of postmenopausal women
    showed to have family history of breast cancer, however, it was not statistically significant (p = 0.12). There was no
    significant difference in daily energy intake of food in both groups (p = 0.22). None of the nutrients in daily food intake
    showed to be statistically significant. Menstrual status showed an association with BMD with p < 0.05 and the remaining
    risk factors did not show any association. Logistic regression revealed that only menstrual status had correlation with
    BMD in both groups. This study provided the dietary pattern and the effects on bone health. The association of other risk
    factors of breast cancer with BMD were also analysed and most of it showed a negative association.
    Matched MeSH terms: Breast Density
  14. Borgquist S, Rosendahl AH, Czene K, Bhoo-Pathy N, Dorkhan M, Hall P, et al.
    Breast Cancer Res, 2018 08 09;20(1):93.
    PMID: 30092829 DOI: 10.1186/s13058-018-1026-7
    BACKGROUND: Long-term insulin exposure has been implicated in breast cancer etiology, but epidemiological evidence remains inconclusive. The aims of this study were to investigate the association of insulin therapy with mammographic density (MD) as an intermediate phenotype for breast cancer and to assess associations with long-term elevated circulating insulin levels using a genetic score comprising 18 insulin-associated variants.

    METHODS: We used data from the KARolinska MAmmography (Karma) project, a Swedish mammography screening cohort. Insulin-treated patients with type 1 (T1D, n = 122) and type 2 (T2D, n = 237) diabetes were identified through linkage with the Prescribed Drug Register and age-matched to 1771 women without diabetes. We assessed associations with treatment duration and insulin glargine use, and we further examined MD differences using non-insulin-treated T2D patients as an active comparator. MD was measured using a fully automated volumetric method, and analyses were adjusted for multiple potential confounders. Associations with the insulin genetic score were assessed in 9437 study participants without diabetes.

    RESULTS: Compared with age-matched women without diabetes, insulin-treated T1D patients had greater percent dense (8.7% vs. 11.4%) and absolute dense volumes (59.7 vs. 64.7 cm3), and a smaller absolute nondense volume (615 vs. 491 cm3). Similar associations were observed for insulin-treated T2D, and estimates were not materially different in analyses comparing insulin-treated T2D patients with T2D patients receiving noninsulin glucose-lowering medication. In both T1D and T2D, the magnitude of the association with the absolute dense volume was highest for long-term insulin therapy (≥ 5 years) and the long-acting insulin analog glargine. No consistent evidence of differential associations by insulin treatment duration or type was found for percent dense and absolute nondense volumes. Genetically predicted insulin levels were positively associated with percent dense and absolute dense volumes, but not with the absolute nondense volume (percentage difference [95% CI] per 1-SD increase in insulin genetic score = 0.8 [0.0; 1.6], 0.9 [0.1; 1.8], and 0.1 [- 0.8; 0.9], respectively).

    CONCLUSIONS: The consistency in direction of association for insulin treatment and the insulin genetic score with the absolute dense volume suggest a causal influence of long-term increased insulin exposure on mammographic dense breast tissue.

    Matched MeSH terms: Breast Density/drug effects*
  15. Soh WH, Rajaram N, Mariapun S, Eriksson M, Fadzli F, Ho WK, et al.
    Cancer Causes Control, 2018 Sep;29(9):883-894.
    PMID: 30062608 DOI: 10.1007/s10552-018-1064-6
    BACKGROUND: Physical activity is a modifiable lifestyle factor associated with reduced breast cancer risk. Mammographic density is a strong, independent risk factor for breast cancer, and some breast cancer risk factors have been shown to modify mammographic density. However, the effect of physical activity on mammographic density, studied predominantly among Caucasians, has yielded conflicting results. In this study, we examined, in an Asian population, the association between physical activity and mammographic density.

    METHODS: We conducted a cross-sectional study of 2,377 Malaysian women aged 40-74 years. Physical activity information was obtained at screening mammogram and mammographic density was measured from mammograms by the area-based STRATUS method (n = 1,522) and the volumetric Volpara™ (n = 1,200) method. Linear regression analyses were performed to evaluate the association between physical activity and mammographic density, adjusting for potential confounders.

    RESULTS: We observed that recent physical activity was associated with area-based mammographic density measures among postmenopausal women, but not premenopausal women. In the fully adjusted model, postmenopausal women with the highest level of recent physical activity had 8.0 cm2 [95% confidence interval: 1.3, 14.3 cm2] lower non-dense area and 3.1% [0.1, 6.3%] higher area-based percent density, compared to women with the lowest level of recent physical activity. Physical activity was not associated to volumetric mammographic density.

    CONCLUSIONS: Our findings suggest that the beneficial effects of physical activity on breast cancer risk may not be measurable through mammographic density. Future research is needed to identify appropriate biomarkers to assess the effect of physical activity on breast cancer risk.

    Matched MeSH terms: Breast Density*
  16. Li J, Ugalde-Morales E, Wen WX, Decker B, Eriksson M, Torstensson A, et al.
    Cancer Res, 2018 11 01;78(21):6329-6338.
    PMID: 30385609 DOI: 10.1158/0008-5472.CAN-18-1018
    Genetic variants that increase breast cancer risk can be rare or common. This study tests whether the genetic risk stratification of breast cancer by rare and common variants in established loci can discriminate tumors with different biology, patient survival, and mode of detection. Multinomial logistic regression tested associations between genetic risk load [protein-truncating variant (PTV) carriership in 31 breast cancer predisposition genes-or polygenic risk score (PRS) using 162 single-nucleotide polymorphisms], tumor characteristics, and mode of detection (OR). Ten-year breast cancer-specific survival (HR) was estimated using Cox regression models. In this unselected cohort of 5,099 patients with breast cancer diagnosed in Sweden between 2001 and 2008, PTV carriers (n = 597) were younger and associated with more aggressive tumor phenotypes (ER-negative, large size, high grade, high proliferation, luminal B, and basal-like subtype) and worse outcome (HR, 1.65; 1.16-2.36) than noncarriers. After excluding 92 BRCA1/2 carriers, PTV carriership remained associated with high grade and worse survival (HR, 1.76; 1.21-2.56). In 5,007 BRCA1/2 noncarriers, higher PRS was associated with less aggressive tumor characteristics (ER-positive, PR-positive, small size, low grade, low proliferation, and luminal A subtype). Among patients with low mammographic density (<25%), non-BRCA1/2 PTV carriers were more often interval than screen-detected breast cancer (OR, 1.89; 1.12-3.21) than noncarriers. In contrast, higher PRS was associated with lower risk of interval compared with screen-detected cancer (OR, 0.77; 0.64-0.93) in women with low mammographic density. These findings suggest that rare and common breast cancer susceptibility loci are differentially associated with tumor characteristics, survival, and mode of detection.Significance: These findings offer the potential to improve screening practices for breast cancer by providing a deeper understanding of how risk variants affect disease progression and mode of detection. Cancer Res; 78(21); 6329-38. ©2018 AACR.
    Matched MeSH terms: Breast Density
  17. Tan M, Mariapun S, Yip CH, Ng KH, Teo SH
    Phys Med Biol, 2019 01 31;64(3):035016.
    PMID: 30577031 DOI: 10.1088/1361-6560/aafabd
    Historically, breast cancer risk prediction models are based on mammographic density measures, which are dichotomous in nature and generally categorize each voxel or area of the breast parenchyma as 'dense' or 'not dense'. Using these conventional methods, the structural patterns or textural components of the breast tissue elements are not considered or ignored entirely. This study presents a novel method to predict breast cancer risk that combines new texture and mammographic density based image features. We performed a comprehensive study of the correlation of 944 new and conventional texture and mammographic density features with breast cancer risk on a cohort of Asian women. We studied 250 breast cancer cases and 250 controls matched at full-field digital mammography (FFDM) status for age, BMI and ethnicity. Stepwise regression analysis identified relevant features to be included in a linear discriminant analysis (LDA) classifier model, trained and tested using a leave-one-out based cross-validation method. The area under the receiver operating characteristic (AUC) and adjusted odds ratios (ORs) were used as the two performance assessment indices in our study. For the LDA trained classifier, the adjusted OR was 6.15 (95% confidence interval: 3.55-10.64) and for Volpara volumetric breast density, 1.10 (0.67-1.81). The AUC for the LDA trained classifier was 0.68 (0.64-0.73), compared to 0.52 (0.47-0.57) for Volpara volumetric breast density (p   breast cancer risk assessment based models. Parenchymal texture analysis has an important role for stratifying breast cancer risk in women, which can be implemented to routine breast cancer screening strategies.
    Matched MeSH terms: Breast Density
  18. Dench E, Bond-Smith D, Darcey E, Lee G, Aung YK, Chan A, et al.
    BMJ Open, 2019 Dec 31;9(12):e031041.
    PMID: 31892647 DOI: 10.1136/bmjopen-2019-031041
    INTRODUCTION: For women of the same age and body mass index, increased mammographic density is one of the strongest predictors of breast cancer risk. There are multiple methods of measuring mammographic density and other features in a mammogram that could potentially be used in a screening setting to identify and target women at high risk of developing breast cancer. However, it is unclear which measurement method provides the strongest predictor of breast cancer risk.

    METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk.

    ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).

    Matched MeSH terms: Breast Density*
  19. Ho PJ, Lau HSH, Ho WK, Wong FY, Yang Q, Tan KW, et al.
    Sci Rep, 2020 01 16;10(1):503.
    PMID: 31949192 DOI: 10.1038/s41598-019-57341-7
    Incidence of breast cancer is rising rapidly in Asia. Some breast cancer risk factors are modifiable. We examined the impact of known breast cancer risk factors, including body mass index (BMI), reproductive and hormonal risk factors, and breast density on the incidence of breast cancer, in Singapore. The study population was a population-based prospective trial of screening mammography - Singapore Breast Cancer Screening Project. Population attributable risk and absolute risks of breast cancer due to various risk factors were calculated. Among 28,130 women, 474 women (1.7%) developed breast cancer. The population attributable risk was highest for ethnicity (49.4%) and lowest for family history of breast cancer (3.8%). The proportion of breast cancers that is attributable to modifiable risk factor BMI was 16.2%. The proportion of breast cancers that is attributable to reproductive risk factors were low; 9.2% for age at menarche and 4.2% for number of live births. Up to 45.9% of all breast cancers could be avoided if all women had breast density <12% and BMI <25 kg/m2. Notably, sixty percent of women with the lowest risk based on non-modifiable risk factors will never reach the risk level recommended for mammography screening. A combination of easily assessable breast cancer risk factors can help to identify women at high risk of developing breast cancer for targeted screening. A large number of high-risk women could benefit from risk-reduction and risk stratification strategies.
    Matched MeSH terms: Breast Density
  20. Schwartz TM, Hillis SL, Sridharan R, Lukyanchenko O, Geiser W, Whitman GJ, et al.
    J Med Imaging (Bellingham), 2020 Mar;7(2):022408.
    PMID: 32042859 DOI: 10.1117/1.JMI.7.2.022408
    Purpose: Computer-aided detection (CAD) alerts radiologists to findings potentially associated with breast cancer but is notorious for creating false-positive marks. Although a previous paper found that radiologists took more time to interpret mammograms with more CAD marks, our impression was that this was not true in actual interpretation. We hypothesized that radiologists would selectively disregard these marks when present in larger numbers. Approach: We performed a retrospective review of bilateral digital screening mammograms. We use a mixed linear regression model to assess the relationship between number of CAD marks and ln (interpretation time) after adjustment for covariates. Both readers and mammograms were treated as random sampling units. Results: Ten radiologists, with median experience after residency of 12.5 years (range 6 to 24) interpreted 1832 mammograms. After accounting for number of images, Breast Imaging Reporting and Data System category, and breast density, the number of CAD marks was positively associated with longer interpretation time, with each additional CAD mark proportionally increasing median interpretation time by 4.35% for a typical reader. Conclusions: We found no support for our hypothesis that radiologists will selectively disregard CAD marks when they are present in larger numbers.
    Matched MeSH terms: Breast Density
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links