Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Chromans/metabolism; Chromans/therapeutic use; Chromans/toxicity*
  2. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Chromans/pharmacology; Chromans/therapeutic use*
  3. Yap SP, Yuen KH
    Int J Pharm, 2004 Aug 20;281(1-2):67-78.
    PMID: 15288344
    A single dose comparative bioavailability study was conducted to evaluate the bioavailability of tocotrienols from two self-emulsifying formulations, one of which produced an emulsion that readily lipolysed under in vitro condition (SES-A), while the other produced a finer dispersion with negligible lipolysis (SES-B) in comparison with that of a non-self-emulsifying formulation in soya oil. The study was conducted according to a three-way crossover design using six healthy human volunteers. Statistically significant differences were observed between the logarithmic transformed peak plasma concentration (Cmax) and total area under the plasma concentration-time curve (AUC(0-infinity)) values of both SES-A and -B compared to NSES-C indicating that SES-A and -B achieved a higher extent of absorption compared to NSES-C. Moreover, the 90% confidence interval of the AUC(0-infinity) values of both SES-A and -B over those of NSES-C were between 2-3 suggesting an increase in bioavailability of about two-three times compared to NSES-C. Both SES-A and -B also achieved a faster onset of absorption. However, both SES-A and -B had comparable bioavailability, despite the fact that SES-B was able to form emulsions with smaller droplet size. Thus, it appeared that both droplet sizes as well as the rate and extent of lipolysis of the emulsion products formed were important for enhancing the bioavailability of the tocotrienols from the self-emulsifying systems.
    Matched MeSH terms: Chromans/blood
  4. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
    Matched MeSH terms: Chromans/pharmacokinetics*
  5. Fasahat, P., Abdullah, A., Muhammad, K., Wickneswari, R.
    MyJurnal
    Tocochromanols (tocopherols and tocotrienols) unitedly known as vitamin E, are the necessary antioxidant components of both human and animal diets. There is a considerable interest in plants with increased or customized vitamin E content, due to their potential health benefits. To quantify the tocochromanol content and determine the expression of a key tocotrienol biosynthesis gene among a set of contrasting red pericarp and light brown rice genotypes of advanced breeding lines together with their parents; expression pattern of homogentisate geranylgeranyl transferase (HGGT), the key gene was studied by semi-quantitative RT-PCR in milky and matured grain stages. Vitamin E analysis was carried out by high performance liquid chromatography (HPLC). The chloroform-methanolic extracts prepared from red pericarp and light brown rice advanced breeding lines showed significant differences for vitamin E content. Averaged across all samples, the content of γ-tocotrienol > α-tocopherol > α-tocotrienol > γ-tocopherol > δ-tocotrienol, and total E vitamin content ranged from 10.30 to 31.65 µg/g. Genotype G37 (red pericarp) was found to have higher expression than G7 (light brown) and G33 (red pericarp) at both grain development stages but lower than both parents whereas their transcript levels were comparatively lower in mature grain, which indicates their possible regulation by plant growth stage. HPLC results of γ-tocotrienol content supported gene expression results with the exception of the recurrent parent MR219.
    Matched MeSH terms: Chromans
  6. M Hussain FB, Al-Khdhairawi AAQ, Kok Sing H, Muhammad Low AL, Anouar EH, Thomas NF, et al.
    J Nat Prod, 2020 12 24;83(12):3493-3501.
    PMID: 33233893 DOI: 10.1021/acs.jnatprod.9b01105
    Svalbardines A and B (1 and 2) and annularin K (3) were isolated from cultures of Poaceicola sp. E1PB, an endophyte isolated from the petals of Papaver dahlianum from Svalbard, Norway. Svalbardine A (1) is a pyrano[3,2-c]chromen-4-one, a new analogue of citromycetin. Svalbardine B (2) displays an unprecedented carbon skeleton based on a 5'-benzyl-spiro[chroman-3,7'-isochromene]-4,8'-dione core. Annularin K (3) is a hydroxylated derivative of annularin D. The structure of these new polyketides, along with those of known compounds 4-6, was established by spectrometric analysis, including extensive ESI-CID-MS
    n
    processing in the case of svalbardine B (2).
    Matched MeSH terms: Chromans
  7. Farahani, A.S.R., Zakiah, J., Abdul Rahman, M., Karsani, S.A., Wan, Ngah Wz
    Medicine & Health, 2008;3(2):256-262.
    MyJurnal
    Gamma-tocotrienol (GTT) has been shown to exhibit significant antitumor activity in a variety of tumor cells. Previous findings have demonstrated that GTT had antiprolifera-tive effects on a liver cancer cell line (HepG2) with an IC50  value of 170μM. In this study, two dimensional gel electrophoresis (2DE) was used to determine changes in protein expression in HepG2 cell line following treatment with GTT. The ultimate aim is to identify the possible molecular mechanisms involved in GTT antitumor activity. This study is focused on obtaining a 2DE protein profile for HepG2 cell line with and without
    GTT treatment. In the preliminary analysis  of the resulting 2DE profiles, 18 protein spots were found to be differentially expressed in cells treated with GTT. This observa-tion is confirmed by extending the analysis  to a larger sample size. By studying the effects of GTT treatment on differential protein expression in HepG2 cells the underly-ing mechanisms involved in the antitumor activity of GTT may be elucidated.
    Matched MeSH terms: Chromans
  8. Abdul Rahman A, Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ
    PMID: 24980711 DOI: 10.1186/1472-6882-14-213
    Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment.
    Matched MeSH terms: Chromans/administration & dosage; Chromans/pharmacology*
  9. Then SM, Mazlan M, Mat Top G, Wan Ngah WZ
    Cell Mol Neurobiol, 2009 Jun;29(4):485-96.
    PMID: 19172392 DOI: 10.1007/s10571-008-9340-8
    Besides acting as potent free radical scavengers, tocopherols and tocotrienols have been known to have non-antioxidant properties such as the involvement of alpha-tocopherol (alphaT) in PKC pathway and the anti-cancer properties of gamma-tocotrienol (gammaT3). This study aims to elucidate whether protective effects shown by alphaT and gammaT3 in H(2)O(2)-induced neuron cultures have anti-apoptotic or pro-apoptotic tendency toward the initiation of neuronal apoptosis. H(2)O(2) is used to induce apoptosis in primary cerebellar neuron cultures which is attenuated by pretreatment of alphaT or gammaT3 at concentrations < or =10 microM. Similar to our previous work, gammaT3 was found to be neurotoxic at concentrations > or =100 microM, whereas alphaT showed no neurotoxicity. Cellular uptake of gammaT3 was higher than that of alphaT. Treating cells simultaneously with either gammaT3 or alphaT and with then H(2)O(2) led to higher expression of Bax and Bcl-2 than in neurons exposed to H(2)O(2) alone. Analysis of Bcl-2/Bax ratio as 'survival index' showed that both pretreatment of gammaT3 and alphaT followed by H(2)O(2) increase the 'survival index' of Bcl-2/Bax ratio compared to H(2)O(2)-treated cells, while treatment of gammaT3 alone decrease the ratio compared to unchanged Bcl2/Bax ratio of similar treatment with alphaT alone. Similar treatment of gammaT3 decreased p53 expression and activates p38 MAPK phosphorylation, whereas alphaT did not alter its expression compared to H(2)O(2)-treated cells. Treating neurons with only gammaT3 or alphaT increased the expression of Bax, Bcl-2, p53, and p38 MAPK compared to control with gammaT3 exerting stronger expression for proteins involved than alphaT. In conclusion, low doses of gammaT3 and alphaT confer neuroprotection to H(2)O(2)-treated neurons via their antioxidant mechanism but gammaT3 has stronger pro-apoptosis tendency than alphaT by activating molecules involved in the neuronal apoptotic pathway in the absence of H(2)O(2).
    Matched MeSH terms: Chromans/pharmacology
  10. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Chromans/metabolism
  11. Makpol S, Shamaan NA, Jarien Z, Top AG, Khalid BA, Wan Ngah WZ
    Gen. Pharmacol., 1997 Apr;28(4):589-92.
    PMID: 9147029
    1. alpha-Tocopherol (alpha-T) and gamma-tocotrienol (gamma-T) were supplemented continuously for 8 weeks in the diets of normal rats and rats chemically induced with cancer using diethylnitrosamine (DEN), 2-acetylaminofluorene (AAF) and partial hepatectomy. Hepatocarcinogenesis was followed by determining the plasma gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activities as well as placental glutathione S-transferase (PGST) and GGT activities histochemically, at 4-week intervals. 2. Male Rattus norvegicus were supplemented alpha-T and gamma-T at two different doses of 30 and 300 mg/kg diet. The supplementation was started at three different times: simultaneously with DEN administration; 4 weeks; and 8 weeks after DEN administration. 3. Elevation of plasma GGT activities and formation of PGST and GGT positive foci were attenuated significantly (P < 0.05) when alpha-T and gamma-T were supplemented simultaneously with cancer induction. Supplementation begun 4 and 8 weeks after cancer induction did not affect plasma enzyme activities and formation of enzyme-positive foci. 4. alpha-T was more effective than gamma-T, and a lower dose of 30 mg/kg was found to be more effective in reducing the severity of hepatocarcinogenesis.
    Matched MeSH terms: Chromans/administration & dosage*
  12. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Chromans/pharmacology*
  13. Tan JK, Then SM, Mazlan M, Raja Abdul Rahman RN, Jamal R, Wan Ngah WZ
    J Nutr Biochem, 2016 May;31:28-37.
    PMID: 27133421 DOI: 10.1016/j.jnutbio.2015.12.019
    Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner.
    Matched MeSH terms: Chromans/pharmacology*
  14. Goon JA, Nor Azman NHE, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Clin Nutr ESPEN, 2017 10;21:1-12.
    PMID: 30014863 DOI: 10.1016/j.clnesp.2017.07.004
    Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.
    Matched MeSH terms: Chromans/administration & dosage*; Chromans/blood
  15. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Chromans
  16. Tan SW, Ramasamy R, Abdullah M, Vidyadaran S
    Cell Immunol, 2011;271(2):205-9.
    PMID: 21839427 DOI: 10.1016/j.cellimm.2011.07.012
    Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p
    Matched MeSH terms: Chromans/pharmacology
  17. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
    Matched MeSH terms: Chromans
  18. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Mar;28(2):149-56.
    PMID: 19779668 DOI: 10.1007/s00774-009-0122-2
    Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented alpha-tocopherol (ATF) or gamma-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.
    Matched MeSH terms: Chromans/administration & dosage
  19. Abd Manan N, Mohamed N, Shuid AN
    PMID: 22956976 DOI: 10.1155/2012/680834
    Oxidative stress and apoptosis can disrupt the bone formation activity of osteoblasts which can lead to osteoporosis. This study was conducted to investigate the effects of γ-tocotrienol on lipid peroxidation, antioxidant enzymes activities, and apoptosis of osteoblast exposed to hydrogen peroxide (H(2)O(2)). Osteoblasts were treated with 1, 10, and 100 μM of γ-tocotrienol for 24 hours before being exposed to 490 μM (IC(50)) H(2)O(2) for 2 hours. Results showed that γ-tocotrienol prevented the malondialdehyde (MDA) elevation induced by H(2)O(2) in a dose-dependent manner. As for the antioxidant enzymes assays, all doses of γ-tocotrienol were able to prevent the reduction in SOD and CAT activities, but only the dose of 1 μM of GTT was able to prevent the reduction in GPx. As for the apoptosis assays, γ-tocotrienol was able to reduce apoptosis at the dose of 1 and 10 μM. However, the dose of 100 μM of γ-tocotrienol induced an even higher apoptosis than H(2)O(2). In conclusion, low doses of γ-tocotrienol offered protection for osteoblasts against H(2)O(2) toxicity, but itself caused toxicity at the high doses.
    Matched MeSH terms: Chromans
  20. Lim SH, Fan SH, Say YH
    Malays J Nutr, 2012 Dec;18(3):345-54.
    PMID: 24568075 MyJurnal
    INTRODUCTION: There is a pressing need to better understand the complex biochemical pathways that lead to the pathogenesis of obesity. Increased oxidative stress and decreased antioxidant capacity have been identified to be associated with obesity. Therefore, the objectives of this study were to determine the plasma total antioxidant capacity (TAC) levels of Malaysian subjects and to evaluate its potential association with obesity and related anthropometric measurements.
    METHODS: Plasma TAC of 362 multi-ethnic Malaysian subjects from the Kampar Health Clinic (138 males, 224 females; 124 ethnic Malays, 152 Chinese, 86 Indians; 192 non-obese, 170 obese) was measured using Trolox equivalent antioxidant capacity (TEAC) 96-well plate assay.
    RESULTS: Plasma TAC was significantly lower in obese subjects (M +/- SE = 292 +/- 10.4 micromol/L) compared to non-obese subjects (397 +/- 8.58 micromol/L), whereas it was significantly higher in males and those in the 21-30 age group. Those with salty food preference and practising a strict vegetarian diet also had significantly higher plasma TAC. However, no association was found for other dietary habits (coffee intake) and lifestyle factors (physical activity, smoking). Plasma TAC was also significantly negatively correlated with diastolic blood pressure, waist and hip circumferences, weight, body mass index, total body fat, % subcutaneous fat, visceral fat level, resting metabolism and % skeletal muscle.
    CONCLUSION: Plasma TAC was found to be associated with obesity, strict vegetarian practice, salty food preference and all obesity anthropometric indicators, except systolic blood pressure and pulse rate. Obese people have decreased plasma TAC indicating a compromised systemic antioxidant defence and increased oxidative stress.
    Matched MeSH terms: Chromans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links