Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Convection
  2. Momani, M.A., Yatim, B., Ali, M.A.M., Abdullah, M.
    ASM Science Journal, 2009;3(2):121-130.
    MyJurnal
    The paper examines the propagation direction and speed of large scale travelling ionospheric disturbances (LSTIDs) obtained from GPS observations of extreme geomagnetic storms during the 23rd solar cycle; these are the October 2003 and November 2003 geomagnetic storms. In the analysis, the time delay between total electron content (TEC) structures at Scott Base station (SBA) (Lat. –77.85º, Long. 166.76º), McMurdo (McM4), (Lat. –77.84º, Long. 166.95º), Davis (DAV1), (Lat. –68.58º, Long. 77.97º) and Casey station (CAS1) (Lat. –66.28º, Long. 110.52º) GPS stations as well as the distance between these stations were employed in the analysis. The measurements during the October 2003 storm showed obvious time delay between the TEC enhancement occurrences at SBA/MCM4, DAV1 and CAS1 stations. The time delay indicated a movement of the ionospheric structures from higher to lower latitudes in a velocity ranging between 0.8 km/s – 1.2 km/s. The first sudden TEC enhancement was observed at SBA/McM4 (Lat. –75.84º) followed by CAS1 station (Lat. –66.28º) and the final TEC enhancement was seen at DAV1 station (Lat. –68.58º) with TEC magnitude decreasing while moving from higher to lower latitudes. One important observation was that although the latitude of the CAS1 station was lower than the DAV1 station, the TEC enhancement was firstly seen at the CAS1 station due to the shorter distance between SBA and CAS1 compared with the distance between SBA and CAS1 of about 500 km. The TEC measurements during the November 2003 storm showed an opposite propagation direction (i.e. poleward direction from lower to higher latitudes) which was seen with a velocity ranging between 0.3 km/s – 0.4 km/s. As similar response was observed using vertical TEC measurements obtained from individual PRN satellites but with higher velocity ranges (1.2 km/s – 2.4 km/s during October
    and 0.5 km/s – 0.7 km/s during November). The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms was probably caused by the disturbances in the neutral temperature which occurred close to the dayside convection throat or due to the neutral wind oscillation induced by atmospheric gravity waves launched from the aurora region.
    Matched MeSH terms: Convection
  3. Kandasamy, R., Azme, Hashim, I., Ismoen, M.
    ASM Science Journal, 2008;2(1):23-33.
    MyJurnal
    The effect of chemical reaction and variable viscosity on mixed convection heat and mass transfer for Hiemenz flow over a porous wedge plate was studied in the presence of heat radiation. The wall of the wedge was embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and had a power-law variation of both the wall temperature and concentration. The fluid was assumed to be viscous and incompressible. Numerical calculations were carried out for different values of dimensionless parameters and an analysis of the results obtained showed that the flow field was influenced appreciably by the buoyancy ratio between species, thermal diffusion and suction/injection at wall surface. The effects of these major parameters on the transport behaviours were investigated methodically and typical results illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions. Comparisons with previously published works were performed and excellent agreement between the results were obtained. It is predicted that this research might prove to be useful for study of the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of underground water, in filtration, and water purification processes.
    Matched MeSH terms: Convection
  4. Arifin, N.M., Mokhtar, N.F.M., Nazar, R., Pop, I.
    ASM Science Journal, 2007;1(1):57-62.
    MyJurnal
    Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
    Matched MeSH terms: Convection
  5. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Convection
  6. Mahmud MN, Siri Z, Vélez JA, Pérez LM, Laroze D
    Chaos, 2020 Jul;30(7):073109.
    PMID: 32752617 DOI: 10.1063/5.0002846
    The control effects on the convection dynamics in a viscoelastic fluid-saturated porous medium heated from below and cooled from above are studied. A truncated Galerkin expansion was applied to balance equations to obtain a four-dimensional generalized Lorenz system. The dynamical behavior is mainly characterized by the Lyapunov exponents, bifurcation, and isospike diagrams. The results show that within a range of moderate and high Rayleigh numbers, proportional controller gain is found to enhance the stabilization and destabilization effects on the thermal convection. Furthermore, due to the effect of viscoelasticity, the system exhibits remarkable topological structures of regular regions embedded in chaotic domains.
    Matched MeSH terms: Convection
  7. Yeow ST, Shahar A, Abdul Aziz N, Anuar MS, Yusof YA, Taip FS
    Drug Des Devel Ther, 2011;5:465-9.
    PMID: 22162640 DOI: 10.2147/DDDT.S25047
    To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer.
    Matched MeSH terms: Convection
  8. Alsabery AI, Ishak MS, Chamkha AJ, Hashim I
    Entropy (Basel), 2018 May 03;20(5).
    PMID: 33265426 DOI: 10.3390/e20050336
    The problem of entropy generation analysis and natural convection in a nanofluid square cavity with a concentric solid insert and different temperature distributions is studied numerically by the finite difference method. An isothermal heater is placed on the bottom wall while isothermal cold sources are distributed along the top and side walls of the square cavity. The remainder of these walls are kept adiabatic. Water-based nanofluids with Al 2 O 3 nanoparticles are chosen for the investigation. The governing dimensionless parameters of this study are the nanoparticles volume fraction ( 0 ≤ ϕ ≤ 0.09 ), Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ) , thermal conductivity ratio ( 0.44 ≤ K r ≤ 23.8 ) and length of the inner solid ( 0 ≤ D ≤ 0.7 ). Comparisons with previously experimental and numerical published works verify a very good agreement with the proposed numerical method. Numerical results are presented graphically in the form of streamlines, isotherms and local entropy generation as well as the local and average Nusselt numbers. The obtained results indicate that the thermal conductivity ratio and the inner solid size are excellent control parameters for an optimization of heat transfer and Bejan number within the fully heated and partially cooled square cavity.
    Matched MeSH terms: Convection
  9. Sekhar YR, Sharma KV, Kamal S
    Environ Sci Pollut Res Int, 2016 May;23(10):9411-7.
    PMID: 26593731 DOI: 10.1007/s11356-015-5715-9
    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
    Matched MeSH terms: Convection*
  10. Siow, L.F., Hui, Y.W.
    MyJurnal
    Antioxidant properties of both fresh and convection oven-dried guavas (Psidium guajava L.) were determined. Guava slices of 1.0 cm wide, 3.0 cm long and 0.5cm thick (20 g) were subjected to convection drying at 40°C for 9, 12 and 14 hours, respectively, and their water activity, total phenolic content (TPC) and antioxidant activities were measured. Guavas that had been subjected to drying for 9, 12 and 14 hours were shown to achieve the water activity of 0.36-0.49. Ascorbic Acid Equivalent Antioxidant Capacity (AEAC) of guava was found to decrease for all the drying durations. Convection oven-drying of guava for 12 and 14 hours showed a significant decrease in TPC (p < 0.01) and Ferric Reducing Power Assay (FRP) (p < 0.01). Nine hours of convection oven-drying was shown to retain most of the TPC, AEAC and FRP of guava.
    Matched MeSH terms: Convection
  11. Ooi EH, Popov V, Alfano M, Cheong JKK
    Int J Hyperthermia, 2020;37(1):634-650.
    PMID: 32538190 DOI: 10.1080/02656736.2020.1771437
    Background: The thermally-induced urine flow can generate cooling that may alter the treatment outcome during hyperthermic treatments of bladder cancer. This paper investigates the effects of natural convection inside the bladder and at skin surface during gold nanorods (GNR) - assisted photothermal therapy (PTT) of bladder cancer in mice. Methods: 3D models of mouse bladder at orientations corresponding to the mouse positioned on its back, its side and its abdomen were examined. Numerical simulations were carried out for GNR volume fractions of 0.001, 0.005 and 0.01% and laser power of 0.2 and 0.3 W. Results: The obtained results showed that cooling due to natural convection inside the bladder and above the skin depends on the mouse orientation. For a mouse positioned on its back, on its side or on its abdomen, the maximum temperature achieved inside the tumour at 0.001% GNR volume fraction and 0.2 W laser power was 55.2°C, 50.0°C and 52.2°C, respectively compared to 56.8°C when natural convection was not considered. The average thermal gradients when natural convection was considered were also lower, suggesting a more homogenous temperature distribution. Conclusions: Natural convection inside the bladder can be beneficial but also detrimental to GNR-assisted PTT depending on the level of heating. At low levels of heating due to low GNR volume fraction and/or laser power, flow inside the bladder may dissipate heat from the targeted tissue; making the treatment ineffective. At high levels of heating due to high GNR volume fraction and/or laser power, cooling may prevent excessive thermal damage to surrounding tissues.
    Matched MeSH terms: Convection
  12. Alsabery AI, Tayebi T, Kadhim HT, Ghalambaz M, Hashim I, Chamkha AJ
    J Adv Res, 2021 May;30:63-74.
    PMID: 34026287 DOI: 10.1016/j.jare.2020.09.008
    Introduction: Mixed convection flow and heat transfer within various cavities including lid-driven walls has many engineering applications. Investigation of such a problem is important in enhancing the performance of the cooling of electric, electronic and nuclear devices and controlling the fluid flow and heat exchange of the solar thermal operations and thermal storage.

    Objectives: The main aim of this fundamental investigation is to examine the influence of a two-phase hybrid nanofluid approach on mixed convection characteristics including the consequences of varying Richardson number, number of oscillations, nanoparticle volume fraction, and dimensionless length and dimensionless position of the solid obstacle.

    Methods: The migration of composite hybrid nanoparticles due to the nano-scale forces of the Brownian motion and thermophoresis was taken into account. There is an inner block near the middle of the enclosure, which contributes toward the flow, heat, and mass transfer. The top lid cover wall of the enclosure is allowed to move which induces a mixed convection flow. The impact of the migration of hybrid nanoparticles with regard to heat transfer is also conveyed in the conservation of energy. The governing equations are molded into the non-dimensional pattern and then explained using the finite element technique. The effect of various non-dimensional parameters such as the volume fraction of nanoparticles, the wave number of walls, and the Richardson number on the heat transfer and the concentration distribution of nanoparticles are examined. Various case studies for Al2O3-Cu/water hybrid nanofluids are performed.

    Results: The results reveal that the temperature gradient could induce a notable concentration variation in the enclosure.

    Conclusion: The location of the solid block and undulation of surfaces are valuable in the control of the heat transfer and the concentration distribution of the composite nanoparticles.

    Matched MeSH terms: Convection
  13. Mior Zakuan Azmi M, Taip FS, Mustapa Kamal SM, Chin NL
    J Food Sci Technol, 2019 Oct;56(10):4616-4624.
    PMID: 31686693 DOI: 10.1007/s13197-019-03926-z
    Baking temperature and time are among the conditions for producing good quality cakes. The aim of this study was to investigate the effects of baking temperature and time on the volume expansion, moisture content, and texture of moist cakes baked in either an air fryer or a convection oven. The cakes were baked under different conditions: (1) baking temperature of 150 °C, 160 °C, and 170 °C for both air fryer and convection oven and (2) baking time of 25, 30, 35 min for air fryer and 35, 40, 45 min for convection oven. Baking temperature and time were found to have a significant (p 
    Matched MeSH terms: Convection
  14. Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim J
    Langmuir, 2020 07 21;36(28):8033-8055.
    PMID: 32551702 DOI: 10.1021/acs.langmuir.0c00839
    The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications. Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter N* and magnetic Grashof number Grm, which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.
    Matched MeSH terms: Convection
  15. Siti Nur Haseela Izani, Anati Ali
    MATEMATIKA, 2019;35(2):187-200.
    MyJurnal
    The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.
    Matched MeSH terms: Convection
  16. Mohamad Hidayad Ahmad Kamal, Anati Ali, Sharidan Shafie
    MATEMATIKA, 2019;35(2):260-270.
    MyJurnal
    The three dimensional free convection boundary layer flow near a stagnation point region is embedded in viscous nanofluid with the effect of g-jitter is studied in this paper. Copper (Cu) and aluminium oxide (Al2O3) types of water base nanofluid are cho- sen with the constant Prandtl number, Pr=6.2. Based on Tiwari-Das nanofluid model, the boundary layer equation used is converted into a non-dimensional form by adopting non- dimensional variables and is solved numerically by engaging an implicit finite-difference scheme known as Keller-box method. Behaviors of fluid flow such as skin friction and Nusset number are studied by the controlled parameters including oscillation frequency, amplitude of gravity modulation and nanoparticles volume fraction. The reduced skin friction and Nusset number are presented graphically and discussed for different values of principal curvatures ratio at the nodal point. The numerical results shows that, in- crement occurs in the values of Nusset number with the presence of solid nanoparticles together with the values of the skin friction. It is worth mentioning that for the plane stagnation point there is an absence of reduced skin friction along the y-direction where as for axisymmetric stagnation point, the reduced skin friction for both directions are the same. As nanoparticles volume fraction increased, the skin friction increased as well as the Nusset number. The results, indicated that skin frictions of copper are found higher than aluminium oxide.
    Matched MeSH terms: Convection
  17. Fasihah Zulkiflee, Ahmad Qushairi Mohamad, Sharidan Shafie, Arshad Khan
    MATEMATIKA, 2019;35(2):117-127.
    MyJurnal
    Free convection flow in a boundary layer region is a motion that results from the interaction of gravity with density differences within a fluid. These differences occur due to temperature or concentration gradients or due to their composition. Studies per- taining free convection flows of incompressible viscous fluids have received much attention in recent years both theoretically (exact or approximate solutions) and experimentally. The situation where the heat be transported to the convective fluid via a bounding sur- face having finite heat capacity is known as Newtonian heating (or conjugate convective flows). In this paper, the unsteady free convection flow of an incompressible viscous fluid between two parallel plates with Newtonian heating is studied. Appropriate non- dimensional variables are used to reduce the dimensional governing equations along with imposed initial and boundary conditions into dimensionless forms. The exact solutions for velocity and temperature are obtained using the Laplace transform technique. The corresponding expressions for skin friction and Nusselt number are also calculated. The graphical results are displayed to illustrate the influence of various embedded parameters such as Newtonian heating parameter and Grashof number. The results show that the effect of Newtonian heating parameter increases the Nusselt number but reduces the skin friction.
    Matched MeSH terms: Convection
  18. Ishamri Ismail, Nur Husna Mohd Fauzi, Mastura Zahidi Baki, Ho, Lee Hoon
    MyJurnal
    This study was carried out to evaluate the effects of different drying methods (sun drying, cabinet
    drying and convection oven) and hydrocolloids (carrageenan and alginate) on physicochemical
    properties of semi-dried catfish jerky. The concentration of hydrocolloids used was 1% and 2%.
    Samples without the addition of hydrocolloid served as the control group. The water activity of semidried catfish jerky decreased with the addition of hydrocolloids. For colour properties, lightness (L*)
    value of semi-dried catfish jerky increased with the increased concentration of hydrocolloids. The
    addition of 2% alginate (2%A) and 2% carrageenan (2%C) showed higher lightness (L*) than the
    controlled group for all drying methods, except for sun drying with carrageenan. Both carrageenan and
    alginate added into semi-dried catfish jerky increased the processing yields. The addition of 2%
    carrageenan (2%C) and 1% alginate (1%A) improved the product yields for all drying methods. This
    paper argues that the application of cabinet dryer gives better shelf stability due to the lower range of
    water activity than other drying methods while preserving colour quality and product yields.
    Matched MeSH terms: Convection
  19. Ghalambaz M, Mehryan SAM, Hajjar A, Shdaifat MYA, Younis O, Talebizadehsardari P, et al.
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803488 DOI: 10.3390/molecules26051496
    A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO-coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.
    Matched MeSH terms: Convection
  20. Aaiza G, Khan I, Shafie S
    Nanoscale Res Lett, 2015 Dec;10(1):490.
    PMID: 26698873 DOI: 10.1186/s11671-015-1144-4
    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
    Matched MeSH terms: Convection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links