Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Indumathi T, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, Mathanmohun M
    J Basic Microbiol, 2024 Feb;64(2):e2300505.
    PMID: 37988658 DOI: 10.1002/jobm.202300505
    The current investigation focuses on synthesizing copper oxide (CuO)-titanium oxide (TiO2 )-chitosan-farnesol nanocomposites with potential antibacterial, antifungal, and anticancer properties against Melanoma cells (melanoma cells [SK-MEL-3]). The nanocomposites were synthesized using the standard acetic acid method and subsequently characterized using an X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results from the antibacterial tests against Streptococcus pneumoniae and Stapylococcus aureus demonstrated significant antibacterial efficacy. Additionally, the antifungal studies using Candida albicans through the agar diffusion method displayed a considerable antifungal effect. For evaluating the anticancer activity, various assays such as MTT assay, acridine orange/ethidium bromide dual staining assay, reactive oxygen species (ROS) generation assay, and mitochondrial membrane potential (MMP) analysis were conducted on SK-MEL-3 cells. The nanocomposites exhibited the ability to induce ROS generation, decrease MMP levels, and trigger apoptosis in SK-MEL-3 cells. Collectively, the findings demonstrated a distinct pattern for the synthesized bimetallic nanocomposites. Furthermore, these nanocomposites also displayed significant (p 
    Matched MeSH terms: Copper/chemistry
  2. Chang SH, Jampang AOA
    Int J Biol Macromol, 2023 Dec 01;252:126491.
    PMID: 37625756 DOI: 10.1016/j.ijbiomac.2023.126491
    This work aimed to develop a modified chitosan adsorbent with enhanced adsorption selectivity for Au(III) over Cu(II) from acidic chloride solutions using low-cost and green raw materials. Various adsorbents, i.e., chitosan powder, chitosan microbeads, chitosan/palm kernel fatty acid distillate (PKFAD) microcomposites, magnetite nanoparticles, and chitosan/PKFAD/magnetite nanocomposites (CPMNs), were first evaluated for their ability to adsorb Au(III) and Cu(II) from single- and binary-metal solutions across different pH levels, followed by parametric analysis of Au(III) and Cu(II) adsorption from binary- and multi-metal solutions onto CPMNs, Au(III) desorption from Au(III)-loaded CPMNs, and reusability of CPMNs. Finally, Au(III)-loaded CPMNs were characterized with SEM-EDX, XRD, FTIR, and XPS to confirm the proposed adsorption mechanisms. Among all the adsorbents studied, CPMNs exhibited outstanding performance in adsorbing Au(III) from an equimolar binary Au(III)-Cu(II) solution, achieving the highest equilibrium adsorption capacity of 0.479 mmol/g (94.4 mg/g) without reaching saturation. Under optimal adsorption conditions of pH 3, 1 g/L CPMN dosage, and 90 min contact time, CPMNs adsorbed 96 % of Au(III) with a selectivity over Cu(II) exceeding 99 %. CPMNs demonstrated excellent reusability, maintaining over 80 % adsorption and desorption efficiencies for 5 cycles. The proposed adsorption mechanisms of CPMNs for Au(III) encompass electrostatic attraction, hydrogen bonding, solvation, and reduction.
    Matched MeSH terms: Copper/chemistry
  3. Liu Y, Marshall NM, Yu SS, Kim W, Gao YG, Robinson H, et al.
    Inorg Chem, 2023 Jul 24;62(29):11618-11625.
    PMID: 37424080 DOI: 10.1021/acs.inorgchem.3c01365
    In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.
    Matched MeSH terms: Copper/chemistry
  4. Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, et al.
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049692 DOI: 10.3390/molecules28072931
    A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
    Matched MeSH terms: Copper/chemistry
  5. Naz S, Gul A, Zia M, Javed R
    Appl Microbiol Biotechnol, 2023 Feb;107(4):1039-1061.
    PMID: 36635395 DOI: 10.1007/s00253-023-12364-z
    Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
    Matched MeSH terms: Copper/chemistry
  6. Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL
    Sci Rep, 2021 10 21;11(1):20825.
    PMID: 34675227 DOI: 10.1038/s41598-021-00057-4
    The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
    Matched MeSH terms: Copper/chemistry*
  7. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: Copper/chemistry
  8. Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM
    Biomolecules, 2021 04 12;11(4).
    PMID: 33921379 DOI: 10.3390/biom11040564
    Plants are rich in phytoconstituent biomolecules that served as a good source of medicine. More recently, they have been employed in synthesizing metal/metal oxide nanoparticles (NPs) due to their capping and reducing properties. This green synthesis approach is environmentally friendly and allows the production of the desired NPs in different sizes and shapes by manipulating parameters during the synthesis process. The most commonly used metals and oxides are gold (Au), silver (Ag), and copper (Cu). Among these, Cu is a relatively low-cost metal that is more cost-effective than Au and Ag. In this review, we present an overview and current update of plant-mediated Cu/copper oxide (CuO) NPs, including their synthesis, medicinal applications, and mechanisms. Furthermore, the toxic effects of these NPs and their efficacy compared to commercial NPs are reviewed. This review provides an insight into the potential of developing plant-based Cu/CuO NPs as a therapeutic agent for various diseases in the future.
    Matched MeSH terms: Copper/chemistry*
  9. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Copper/chemistry
  10. Ghalambaz M, Mehryan SAM, Hajjar A, Shdaifat MYA, Younis O, Talebizadehsardari P, et al.
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803488 DOI: 10.3390/molecules26051496
    A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO-coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.
    Matched MeSH terms: Copper/chemistry*
  11. Arul P, Huang ST, Gowthaman NSK, Govindasamy M, Jeromiyas N
    Mikrochim Acta, 2020 11 09;187(12):650.
    PMID: 33165679 DOI: 10.1007/s00604-020-04631-x
    A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.0, 7.0, and 9.0) of the reaction medium. The AT-Cu-NDCA MOF/GC electrode not only increases the electroactive surface area but also boosts the electron transfer rate reaction compared to other modified electrodes (PAT- and FL-Cu-NDCA MOFs/GCEs). Under the optimized conditions, the modified electrode (AT-Cu-NDCA MOF) exhibited a sharp oxidation peak (+ 0.46 V vs. Ag/AgCl) and higher current response for rutin. The electrode provides a wide linear range from 1 × 10-9 to 50 × 10-6 M, a low detection limit of 1.21 × 10-10 M, LOQ of 0.001 μM, and sensitivity of 0.149 μA μM-1 cm-2. The AT-Cu-NDCA MOF/GC electrode exhibited good stability (RSD = 3.52 ± 0.02% over 8 days of storage), and excellent reproducibility (RSD = 2.62 ± 0.02% (n = 3)). The modified electrode was applied to the determination of rutin in apple, orange, and lemon samples with good recoveries (99.79-99.91, 99.24-99.69, and 99.53-99.83, respectively). Graphical abstract Anisotropic structure of Cu-NDCA MOFs and its modification on glassy carbon electrode for ultra-sensitive determination of rutin in fruit samples.
    Matched MeSH terms: Copper/chemistry*
  12. Khan T, Binti Abd Manan TS, Isa MH, Ghanim AAJ, Beddu S, Jusoh H, et al.
    Molecules, 2020 Jul 17;25(14).
    PMID: 32708928 DOI: 10.3390/molecules25143263
    This research optimized the adsorption performance of rice husk char (RHC4) for copper (Cu(II)) from an aqueous solution. Various physicochemical analyses such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, bulk density (g/mL), ash content (%), pH, and pHZPC were performed to determine the characteristics of RHC4. The effects of operating variables such as the influences of aqueous pH, contact time, Cu(II) concentration, and doses of RHC4 on adsorption were studied. The maximum adsorption was achieved at 120 min of contact time, pH 6, and at 8 g/L of RHC4 dose. The prediction of percentage Cu(II) adsorption was investigated via an artificial neural network (ANN). The Fletcher-Reeves conjugate gradient backpropagation (BP) algorithm was the best fit among all of the tested algorithms (mean squared error (MSE) of 3.84 and R2 of 0.989). The pseudo-second-order kinetic model fitted well with the experimental data, thus indicating chemical adsorption. The intraparticle analysis showed that the adsorption process proceeded by boundary layer adsorption initially and by intraparticle diffusion at the later stage. The Langmuir and Freundlich isotherm models interpreted well the adsorption capacity and intensity. The thermodynamic parameters indicated that the adsorption of Cu(II) by RHC4 was spontaneous. The RHC4 adsorption capacity is comparable to other agricultural material-based adsorbents, making RHC4 competent for Cu(II) removal from wastewater.
    Matched MeSH terms: Copper/chemistry*
  13. Hisham S, Kadirgama K, Mohammed HA, Kumar A, Ramasamy D, Samykano M, et al.
    Molecules, 2020 Jun 28;25(13).
    PMID: 32605301 DOI: 10.3390/molecules25132975
    Friction and wear are the main factors in the failure of the piston in automobile engines. The objective of this work was to improve the tribological behaviour and lubricant properties using hybrid Cellulose Nanocrystal (CNC) and Copper (II) oxide nanoparticles blended with SAE 40 as a base fluid. The two-step method was used in the hybrid nanofluid preparation. Three different concentrations were prepared in a range of 0.1% to 0.5%. Kinematic viscosity and viscosity index were also identified. The friction and wear behavior were evaluated using a tribometer based on ASTM G181. The CNC-CuO nano lubricant shows a significant improvement in term of viscosity index by 44.3-47.12% while for friction, the coefficient of friction (COF) decreases by 1.5%, respectively, during high and low-speed loads (boundary regime), and 30.95% during a high-speed, and low load (mixed regime). The wear morphologies results also show that a smoother surface was obtained after using CNC-CuO nano lubricant compared to SAE 40.
    Matched MeSH terms: Copper/chemistry*
  14. Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M
    J Hazard Mater, 2020 06 05;391:122248.
    PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248
    Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
    Matched MeSH terms: Copper/chemistry
  15. Begum SZ, Nizam NSM, Muhamad A, Saiman MI, Crouse KA, Abdul Rahman MB
    PLoS One, 2020;15(11):e0238147.
    PMID: 33147237 DOI: 10.1371/journal.pone.0238147
    Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.
    Matched MeSH terms: Copper/chemistry*
  16. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Copper/chemistry*
  17. Syafiq U, Ataollahi N, Maggio RD, Scardi P
    Molecules, 2019 Sep 23;24(19).
    PMID: 31547625 DOI: 10.3390/molecules24193454
    Cu2ZnSnS4 (CZTS) ink was synthesized from metal chloride precursors, sulfur, and oleylamine (OLA), as a ligand by a simple and low-cost hot-injection method. Thin films of CZTS were then prepared by spin coating, followed by thermal annealing. The effects of the fabrication parameters, such as ink concentration, spinning rate, and thermal treatment temperatures on the morphology and structural, optical, and electrical properties of the films were investigated. As expected, very thin films, for which the level of transmittance and band-gap values increase, can be obtained either by reducing the concentration of the inks or by increasing the rate of spinning. Moreover, the thermal treatment affects the phase formation and crystallinity of the film, as well as the electrical conductivity, which decreases at a higher temperature.
    Matched MeSH terms: Copper/chemistry*
  18. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
    Matched MeSH terms: Copper/chemistry
  19. Brza MA, Aziz SB, Anuar H, Al Hazza MHF
    Int J Mol Sci, 2019 Aug 11;20(16).
    PMID: 31405255 DOI: 10.3390/ijms20163910
    The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
    Matched MeSH terms: Copper/chemistry*
  20. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Aug;197:111531.
    PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531
    Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
    Matched MeSH terms: Copper/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links