METHODS: MEDLINE and Embase databases were searched from inception up to September 2019 to identify all studies that compared the predictive performance of cystatin C- and/or creatinine-based eGFR in predicting the clearance of vancomycin. The prediction errors (PEs) (the value of eGFR equations minus vancomycin clearance) were quantified for each equation and were pooled using a random-effects model. The root mean squared errors were also quantified to provide a metric for imprecision.
RESULTS: This meta-analysis included evaluations of seven different cystatin C- and creatinine-based eGFR equations in total from 26 studies and 1,234 patients. The mean PE (MPE) for cystatin C-based eGFR was 4.378 mL min-1 (95% confidence interval [CI], -29.425, 38.181), while the creatinine-based eGFR provided an MPE of 27.617 mL min-1 (95% CI, 8.675, 46.560) in predicting clearance of vancomycin. This indicates the presence of unbiased results in vancomycin clearance prediction by the cystatin C-based eGFR equations. Meanwhile, creatinine-based eGFR equations demonstrated a statistically significant positive bias in vancomycin clearance prediction.
CONCLUSION: Cystatin C-based eGFR equations are better than creatinine-based eGFR equations in predicting the clearance of vancomycin. This suggests that utilising cystatin C-based eGFR equations could result in better accuracy and precision to predict vancomycin pharmacokinetic parameters.
METHODS: Study subjects include patients with various levels of renal function recruited from the nephrology clinic and wards of a tertiary hospital. The blood samples collected were analyzed for serum cystatin C and creatinine levels by particle-enhanced turbidimetric immunoassay and kinetic alkaline picrate method, respectively. DNA was extracted using a commercially available kit. -Polymerase chain reaction results were confirmed by direct DNA Sanger sequencing.
RESULTS: The genotype percentage (G/G = 73%, G/A = 24.1%, and A/A = 2.9%) adhere to the Hardy-Weinberg equilibrium. The dominant allele found in our population was CST3 73G allele (85%). The regression lines' slope of serum cystatin C against creatinine and cystatin C-based eGFR against creatinine-based eGFR, between G and A allele groups, showed a statistically significant difference (z-score = 3.457, p < 0.001 and z-score = 2.158, p = 0.015, respectively). Patients with A allele had a lower serum cystatin C level when the values were extrapolated at a fixed serum creatinine value, suggesting the influence of genetic factor.
CONCLUSION: Presence of CST3 gene G73A polymorphism affects serum cystatin C levels.
METHODS: The current study was conducted at the Hospital University Sains Malaysia, Kelantan. A total of 300 elderly Malay participants ≥ 65 years, with CKD, were taken in study. Demographic data, blood pressure, weight, and height were documented. Serum creatinine was assayed by Chemistry Analyzer Model Architect-C8000 (Jaffe Method), while serum cystatin C was examined by Human cystatin C ELISA kit (Sigma-Aldrich) using Thermo Scientific Varioskan Flash ELISA reader.
RESULTS: The study participants were divided into three groups on the basis of age. There was a statistically significant difference at the p value cystatin C levels were observed on the basis of patient's age and BMI.
CONCLUSION: Cystatin C is not related to BMI and age among elderly chronic kidney disease patients. The study clearly evaluates the role of serum cystatin C as a good competitor of creatinine among the elderly CKD patients.
Methods: One hundred and fifty hard-working agricultural farmers from high-prevalence area for CKDu (Madawachchiya) were screened three times for proteinuria; 66 proteinuric and 21 non-proteinuric were identified as the baseline classification. Selected individuals were analysed further for creatinine, protein and cystatin C in urine and creatinine, cystatin C in serum. Urine protein-to-creatinine ratio (UP/UC) was calculated.
Results: Based on creatinine and cystatin C cut-off levels in serum, individuals were classified as high or normal. Diagnosis of two functional markers (creatinine and cystatin C) were evaluated using receiver operating characteristic (ROC) curve and in terms of sensitivity and specificity using UP/UC as the baseline. Creatinine and cystatin C-based eGFR (estimated Glomerular filtration rate) levels were calculated, and Pearson's correlation coefficient was determined between different eGFR measurements using UP/UC. Mean (SD) UP/UC ratio, serum creatinine, and serum cystatin C levels of the proteinuric subjects were 129.0 (18.4) mg/mmol, 1.35 (0.39) mg/dL, 1.69 (0.58) mg/L. For non-proteniuric individuals, the results were found to be 14.4 (2.28), 1.22 (0.40) mg/dL, 0.82 (0.25) mg/L. The ROC analysis showed excellent accuracy in using cystatin C for identifying proteinuric patients than creatinine area under the curve (AUC): 0.9675, P < 0.001). Cut-off points were identified as 1.015 mg/dL for serum creatinine and 0.930mg/L for cystatin C. Furthermore, cystatin C based Hoek formula showed the better correlation (0.635, P < 0.001) with UP/UC compared with creatinine based modification of diet in renal disease (MDRD) formula.
Conclusion: The study showed elevated serum cystatin C in patients with persisting proteinuria compared with non-responding serum creatinine. Moreover, cystatin C-based eGFR equations were more accurate to determine the kidney function than serum creatinine in proteinuric patients who are vulnerable for CKDu in high-prevalence areas.