Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Foong JN, Selvarajah GT, Rasedee A, Rahman HS, How CW, Beh CY, et al.
    Biomed Res Int, 2018;2018:8691569.
    PMID: 30410940 DOI: 10.1155/2018/8691569
    Canine mammary gland tumor (CMT) is the most common tumor in intact female dog. Zerumbone (ZER) has promising anticancer properties, but plagued with poor water solubility, poor absorption, bioavailability, and delivery to target tissues. To solubilize, ZER was loaded into nanostructured lipid carrier (NLC) to produce ZER-loaded NLC (ZER-NLC). The objectives of this study were to determine the antiproliferative effect and the mode of cell death induced by ZER-NLC and ZER on a canine mammary gland tumor (CMT) adenocarcinoma primary cell line. There was no significant difference (p>0.05) between ZER-NLC and ZER treatments in the inhibition of CMT cell proliferation; thus, the loading of ZER into NLC did not compromise the cytotoxic effect of ZER. Microscopically, ZER-NLC- and ZER-treated CMT cells showed apoptotic cell morphology. ZER-NLC and ZER treatments significantly downregulated the antiapoptotic Bcl-2 and upregulated the proapoptotic Bax gene expressions in CMT cells. Both ZER-NLC and ZER-treated CMT cells showed significant (p<0.0001) increases in caspase-8, -9, and -3/7 protein activities. In conclusion, ZER-NLC induced CMT cell death via regulation of Bcl-2 and Bax gene expressions and caspase activations, indicating the involvement of both the intrinsic and extrinsic pathways of apoptosis. This study provided evidences for the potential of ZER-NLC as an anticanine mammary gland adenocarcinoma chemotherapy.
    Matched MeSH terms: DNA-Binding Proteins
  2. Ahmad Aizat AA, Siti Nurfatimah MS, Aminudin MM, Ankathil R
    World J Gastroenterol, 2013 Jun 21;19(23):3623-8.
    PMID: 23801864 DOI: 10.3748/wjg.v19.i23.3623
    To investigate the risk association of xeroderma pigmentosum group C (XPC) Lys939Gln polymorphism alone and in combination with cigarette smoking on colorectal cancer (CRC) predisposition.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  3. Zaatar AM, Lim CR, Bong CW, Lee MM, Ooi JJ, Suria D, et al.
    J Exp Clin Cancer Res, 2012 Sep 17;31:76.
    PMID: 22986368 DOI: 10.1186/1756-9966-31-76
    BACKGROUND: Treatment protocols for nasopharyngeal carcinoma (NPC) developed in the past decade have significantly improved patient survival. In most NPC patients, however, the disease is diagnosed at late stages, and for some patients treatment response is less than optimal. This investigation has two aims: to identify a blood-based gene-expression signature that differentiates NPC from other medical conditions and from controls and to identify a biomarker signature that correlates with NPC treatment response.

    METHODS: RNA was isolated from peripheral whole blood samples (2 x 10 ml) collected from NPC patients/controls (EDTA vacutainer). Gene expression patterns from 99 samples (66 NPC; 33 controls) were assessed using the Affymetrix array. We also collected expression data from 447 patients with other cancers (201 patients) and non-cancer conditions (246 patients). Multivariate logistic regression analysis was used to obtain biomarker signatures differentiating NPC samples from controls and other diseases. Differences were also analysed within a subset (n=28) of a pre-intervention case cohort of patients whom we followed post-treatment.

    RESULTS: A blood-based gene expression signature composed of three genes - LDLRAP1, PHF20, and LUC7L3 - is able to differentiate NPC from various other diseases and from unaffected controls with significant accuracy (area under the receiver operating characteristic curve of over 0.90). By subdividing our NPC cohort according to the degree of patient response to treatment we have been able to identify a blood gene signature that may be able to guide the selection of treatment.

    CONCLUSION: We have identified a blood-based gene signature that accurately distinguished NPC patients from controls and from patients with other diseases. The genes in the signature, LDLRAP1, PHF20, and LUC7L3, are known to be involved in carcinoma of the head and neck, tumour-associated antigens, and/or cellular signalling. We have also identified blood-based biomarkers that are (potentially) able to predict those patients who are more likely to respond to treatment for NPC. These findings have significant clinical implications for optimizing NPC therapy.

    Matched MeSH terms: DNA-Binding Proteins
  4. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: DNA-Binding Proteins/antagonists & inhibitors; DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism*
  5. Halim NH, Chong ET, Goh LP, Chuah JA, See EU, Chua KH, et al.
    Asian Pac J Cancer Prev, 2016;17(4):1925-31.
    PMID: 27221877
    BACKGROUND: The XRCC1 protein facilitates various DNA repair pathways; single-nucleotide polymorphisms (SNPs) in this gene are associated with a risk of gastrointestinal cancer (GIC) with inconsistent results, but no data have been previously reported for the Sabah, North Borneo, population. We accordingly investigated the XRCC1 Arg194Trp and Arg399Gln SNPs in terms of GIC risk in Sabah.

    MATERIALS AND METHODS: We performed genotyping for both SNPs for 250 GIC patients and 572 healthy volunteers using a polymerase chain reaction- restriction fragment length polymorphism approach. We validated heterozygosity and homozygosity for both SNPs using direct sequencing.

    RESULTS: The presence of a variant 194Trp allele in the Arg194Trp SNP was significantly associated with a higher risk of GIC, especially with gastric and colorectal cancers. We additionally found that the variant 399Gln allele in Arg399Gln SNP was associated with a greater risk of developing gastric cancer. Our combined analysis revealed that inheritance of variant alleles in both SNPs increased the GIC risk in Sabah population. Based on our etiological analysis, we found that subjects ≥50 years and males who carrying the variant 194Trp allele, and Bajau subjects carrying the 399Gln allele had a significantly increased risk of GIC.

    CONCLUSIONS: Our findings suggest that inheritance of variant alleles in XRCC1 Arg194Trp and Arg399Gln SNPs may act as biomarkers for the early detection of GIC, especially for gastric and colorectal cancers in the Sabah population.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  6. Leong, Melody Pui Yee, Usman Bala, Lim, Chai Ling, Rozita Rosli, Cheah, Pike-See, Ling, King-Hwa
    Neuroscience Research Notes, 2018;1(1):21-41.
    MyJurnal
    Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates. A total of 166 and 262 differentially expressed protein-coding genes (DEGs) were identified in the soleus and EDL muscles, respectively. The partial trisomy of MMU16 in Ts1Cje mice has a greater effect on gene expression in EDL. Top-down clustering analysis of all DEGs for represented functional ontologies revealed 5 functional clusters in soleus associated with signal transduction, development of reproductive system, nucleic acid biosynthesis, protein modification and metabolism as well as regulation of gene expression. On the other hand, only 3 functional clusters were observed for EDL namely neuron and cell development, protein modification and metabolic processes as well as ion transport. A total of 11 selected DEGs were validated using qPCR (disomic DEGs: Mansc1; trisomic DEGs: Itsn1, Rcan1, Synj1, Donson, Dyrk1a, Ifnar1, Ifnar2, Runx1, Sod1 and Tmem50b). The validated DEGs were implicated in neuromuscular junction signalling (Itsn1, Syn1), oxidative stress (Sod1, Runx1) and chronic inflammation processes (Runx1, Rcan1, Ifnar1, Ifnar2). Other validated DEGs have not been well-documented as involved in the skeletal muscle development or function, thus serve as interesting novel candidates for future investigations. To our knowledge, the study was the first attempt to determine the transcriptomic profiles of both soleus and EDL muscles in Ts1Cje mice. It provides new insights on the possible disrupted molecular pathways associated with hypotonia in DS individuals.
    Matched MeSH terms: DNA-Binding Proteins
  7. Greenwood M, Greenwood MP, Paton JF, Murphy D
    PLoS One, 2015;10(4):e0124956.
    PMID: 25915053 DOI: 10.1371/journal.pone.0124956
    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
    Matched MeSH terms: DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism
  8. Qiu J, Kleineidam A, Gouraud S, Yao ST, Greenwood M, Hoe SZ, et al.
    Endocrinology, 2014 Nov;155(11):4380-90.
    PMID: 25144923 DOI: 10.1210/en.2014-1448
    The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  9. Wong SF, Lai LC
    Pathology, 2001 Feb;33(1):85-92.
    PMID: 11280615
    Transforming growth factor beta (TGFbeta) is secreted as a large latent precursor from both normal and transformed cells which needs to be activated for biological activity. The active TGFbeta binds either directly to TbetaR-II or indirectly by binding to beta-glycan which then presents the TGFbeta to TbetaR-II. Formation of the TGFbeta-TbetaR-II complex rapidly leads to phosphorylation of TbetaR-I. TbetaR-I, in turn, phosphorylates receptor-specific Smads and induces their translocation into the nucleus. TGFbeta is able to act as a growth stimulator or inhibitor and elicits a broad spectrum of biological effects on various cell types. However, these cells may lose their sensitivity and responsiveness to TGFbeta. Down-regulation or loss of functional receptors, aberrant signal transduction pathways due to Smad mutations, loss of the cell's ability to activate latent TGFbeta, loss of the peptide itself or functional genes that control the transcription and translation of TGFbeta may contribute to development of cancer.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  10. Peh SC, Shaminie J, Tai YC, Tan J, Gan SS
    Histopathology, 2004 Nov;45(5):501-10.
    PMID: 15500654
    Follicular lymphoma is frequently associated with t(14;18)(q32;q21) translocation. This study was undertaken to determine the pattern of Bcl-2, CD10 and Bcl-6 expression in relation to t(14;18) translocation in follicular lymphoma from a cohort of a multi-ethnic Asian population.
    Matched MeSH terms: DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism
  11. Nailwal H, Sharma S, Mayank AK, Lal SK
    Cell Death Dis, 2015 May 21;6:e1768.
    PMID: 25996295 DOI: 10.1038/cddis.2015.131
    The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.
    Matched MeSH terms: DNA-Binding Proteins/antagonists & inhibitors; DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism*
  12. Peh SC, Shaminie J, Poppema S, Kim LH
    Singapore Med J, 2003 Apr;44(4):185-91.
    PMID: 12952030
    Castleman's disease is an uncommon disease and the histopathogenesis is poorly understood. This study aims to investigate their clinicopathological and immunophenotypic profile.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  13. Al-Joudi FS, Iskandar ZA, Rusli J
    Med J Malaysia, 2008 Jun;63(2):96-9.
    PMID: 18942291
    The p53 gene is a tumour suppressor gene that encodes a 393-amino-acid nuclear DNA-binding phosphoprotein. The significance of p53 detection is that p53 mutation is linked with chemo-resistance and transformation to more aggressive disease in a large number of tumour types and it was confirmed that mutant p53 is involved in neoplastic transformations. In addition, the expression of p53 has been closely correlated with clinicopathological findings. Since breast cancer has been reported as one of the most frequent malignancies in women in Malaysia, the expression of p53 was studied in 382 cases of invasive ductal carcinoma of the breast, obtained from three major hospitals in the North-East States of Malaysia. The study utilized an enzyme immunohistochemistry assay for the detection of p53. It was found that p53 was expressed in 29.6% of all the study cases. Furthermore, its expression was significantly correlated with the age and the clinical grading of the disease. No significant statistical correlations were depicted with lymph node status, tumour size, side of tumour, and expression of estrogen and progesterone receptors. Nevertheless, knowledge of the p53 status may be valuable in making clinical decisions regarding diagnosis, prognosis and therapy.
    Matched MeSH terms: DNA-Binding Proteins/analysis*
  14. Chiang C, Li Y, Ng SK
    Front Immunol, 2020;11:625504.
    PMID: 33613567 DOI: 10.3389/fimmu.2020.625504
    Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
    Matched MeSH terms: DNA-Binding Proteins/immunology*
  15. Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS, Naidu R
    Molecules, 2015;20(7):11830-60.
    PMID: 26132907 DOI: 10.3390/molecules200711830
    In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  16. Ng CH, Akhter A, Yurko N, Burgener JM, Rosonina E, Manley JL
    Nat Commun, 2015 Mar 13;6:6610.
    PMID: 25766875 DOI: 10.1038/ncomms7610
    The small ubiquitin-like modifier (SUMO) is implicated in various cellular activities, including transcriptional regulation. We previously showed that the yeast activator Gcn4 becomes sumoylated during activation, facilitating its eventual promoter eviction and transcriptional shut off. Here we show that the corepressor Tup1 is sumoylated, at two specific lysines, under various stress conditions. Mutation of these sites has no effect on Tup1 recruitment or RNAP II promoter occupancy immediately following induction. However, Tup1 levels subsequently decrease, while RNAP II and transcription increase in Tup1 mutant cells. Consistent with this, a Tup1 mutant displaying increased sumoylation led to reduced transcription. We also show that coordinated sumoylation of Gcn4 and Tup1 enhances Gcn4 promoter eviction and that multiple Tup1-interacting proteins become sumoylated after stress. Together, our studies provide evidence that coordinated sumoylation of Gcn4, Tup1 and likely other factors dampens activated transcription by stabilizing Tup1 binding and stimulating Gcn4 and RNAP II removal.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  17. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
    Matched MeSH terms: DNA-Binding Proteins/genetics; DNA-Binding Proteins/metabolism*
  18. Mathew A, Cheng HM, Sam CK, Prasad U
    Clin. Immunol. Immunopathol., 1994 May;71(2):164-8.
    PMID: 7514112
    Inhibition studies were carried out to study possible cross-reactivity between a peptide fragment of the Epstein-Barr virus nuclear antigen, EBNA-1, and keratin/collagen. The 20-amino acid peptide (pAG), derived from a glycine-alanine repeat region of EBNA-1, uniquely makes up about one-third of the viral protein and is a dominant IgA antigenic epitope in patients with nasopharyngeal carcinoma (NPC). A small percentage of normal human sera (NHS) also binds pAG and this reactivity is examined in this study. Ten percent (2/20) and 13.4% (2/15) of IgA-pAG-positive NPC sera and NHS, respectively, were significantly inhibited by keratin in a competitive ELISA system. Conversely, 31.6% (6/19) and 30.8% (4/13) of IgA-keratin-positive NPC sera and NHS, respectively, were significantly inhibited by pAG. This indicated minimum cross-reactivity between IgA serum antibodies to EBNA-1 and keratin. Using collagen as inhibitor, none of 18 and only 2/13 IgA-pAG-positive NPC sera and NHS, respectively, were inhibited. In the collagen ELISA system, only 2/19 (10.5%) and 4/25 (16%) of IgA-collagen-positive NPC sera and NHS, respectively, were inhibited with pAG. Therefore, cross-reactivity with collagen was also low. IgA-pAG-positive NHS may therefore not be a false positive phenomenon, but whether it may represent an early serological profile related to NPC carcinogenesis remains to be determined.
    Matched MeSH terms: DNA-Binding Proteins/immunology*
  19. Shen Ni L, Allaudin ZN, Mohd Lila MA, Othman AM, Othman FB
    BMC Cancer, 2013 Oct 21;13:488.
    PMID: 24144306 DOI: 10.1186/1471-2407-13-488
    BACKGROUND: Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis.

    METHODS: For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N' terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect.

    RESULTS: Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32-83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1-31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin's signature targeting activity.

    CONCLUSIONS: Therefore, the critical stretch spanning amino acid 1-31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across cellular membrane, simultaneously promoting protein delivery for selective and effective breast cancer therapy.

    Matched MeSH terms: DNA-Binding Proteins
  20. Cheng HM, Foong YT, Mathew A, Sam CK, Dillner J, Prasad U
    J Virol Methods, 1993 Apr;42(1):45-51.
    PMID: 7686558
    An ELISA using the Epstein-Barr virus nuclear antigen 1 (EBNA 1) was found to detect selectively specific IgA in sera from patients with nasopharyngeal carcinoma (NPC). The antigen, p107, was a 20-amino acid synthetic peptide, representing a major epitope of EBNA 1.267/294 (90.8%) of NPC patients had IgA antibodies to p107 but in normal individuals, only 41/577 (7.1%) had IgA/p107. In sera from patients with other cancers, 11/77 (14.3%) had IgA/p107 reactivity. 124 IgA/VCA positive and 86 IgA/VCA negative NPC sera were also tested for IgA/p107 binding in ELISA. The majority of IgA/VCA positive sera (117) also contained IgA/p107 antibodies. Of interest was the detection of 74/86 IgA/p107 reactive sera in the IgA/VCA negative group. The results suggest that the IgA/p107 ELISA could become a useful, complementary screening assay to the IgA/VCA immunofluorescence test for detection of NPC.
    Matched MeSH terms: DNA-Binding Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links