Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Alam F, Islam MA, Khalil MI, Gan SH
    Curr Pharm Des, 2016;22(20):3034-49.
    PMID: 26951104 DOI: 10.2174/1381612822666160307145801
    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  2. Ali Y, Abd Hamid S
    Tumour Biol., 2016 Jan;37(1):47-55.
    PMID: 26482620 DOI: 10.1007/s13277-015-4270-9
    Topoisomerases are nuclear enzymes that regulate topology of DNA by facilitating the temporary cleavage and ligation cycle of DNA. Among all forms of topoisomerases, TOP-IIA is extensively associated with cell proliferation and therefore is an important therapeutic target in diseases that involved cellular proliferation such as cancers. Nearly half of present-day antitumor regimens contain at least one prescription that act as a topoisomerase inhibitor. Generally, tumor cells show divergent expression of TOP-IIA compared to normal cells. The remarkable expression of TOP-IIA in various carcinomas provides a significant biomarker toward understanding the nature of malignancy. TOP-IIA expression and amplification studies help in diagnosing cancer and to observe the disease progression, overall survival (OS) of patients, and response to therapy. This review highlights the research output and analysis in exploring the standing of TOP-IIA in various carcinomas. As some reports show contradiction within the same field of interest, the outline of that may help to induce researchers for further investigation and clarification. To the best of our knowledge, this is the first overview briefly summarizing the prognostic feature of TOP-IIA in various types of cancer.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  3. Farhana A, Koh AE, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500845 DOI: 10.3390/molecules26175414
    Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  4. Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S
    Mol Biol Rep, 2021 Jun;48(6):5121-5133.
    PMID: 34169395 DOI: 10.1007/s11033-021-06509-4
    The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  5. Greenwood M, Greenwood MP, Paton JF, Murphy D
    PLoS One, 2015;10(4):e0124956.
    PMID: 25915053 DOI: 10.1371/journal.pone.0124956
    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  6. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  7. Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, et al.
    Cell Rep, 2014 Mar 13;6(5):892-905.
    PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029
    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  8. Lau WK, Noruddin NAA, Ariffin AH, Mahmud MZ, Noor MHM, Amanah A, et al.
    BMC Complement Altern Med, 2019 Sep 05;19(1):243.
    PMID: 31488120 DOI: 10.1186/s12906-019-2640-3
    BACKGROUND: Brown adipocytes are known to promote energy expenditure and limit weight gain to combat obesity. Averrhoa bilimbi, locally called belimbing buluh (DBB), is mainly used as an ethnomedicine in the treatment of metabolic disorders including diabetes mellitus, hypertension and obesity. The present study aims to investigate the browning activity on white adipocytes by A. bilimbi leaf extract and to evaluate the potential mechanisms.

    METHODS: Ethanolic leaf extract of A. bilimbi was exposed to Myf5 lineage precursor cells to stimulate adipocyte differentiation. Protein expressions of brown adipocyte markers were determined through high content screening analysis and validated through western blotting. Mito Stress Test assay was conducted to evaluate the cellular oxygen consumption rate upon A. bilimbi treatment.

    RESULTS: A. bilimbi ethanolic leaf extract exhibited an adipogenesis effect similar to a PPARgamma agonist. It also demonstrated brown adipocyte differentiation in myoblastic Myf5-positive precursor cells. Expression of UCP1 and PRDM16 were induced. The basal metabolic rate and respiratory capacity of mitochondria were increased upon A. bilimbi treatment.

    CONCLUSIONS: The findings suggest that Averrhoa bilimbi ethanolic leaf extract induces adipocyte browning through PRDM16 activation and enhances mitochondria activity due to UCP1 up-regulation.

    Matched MeSH terms: DNA-Binding Proteins/metabolism
  9. Levitskiy SA, Sycheva AM, Kharlampieva DD, Oberto J, Kamashev DE, Serebryakova MV, et al.
    Biochimie, 2011 Jul;93(7):1102-9.
    PMID: 21443922 DOI: 10.1016/j.biochi.2011.03.005
    HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3'-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA-binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  10. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  11. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J
    Trop Biomed, 2008 Apr;25(1):46-57.
    PMID: 18600204 MyJurnal
    Colorectal carcinoma (CRC) arises as a result of mutational activation of oncogenes coupled with inactivation of tumour suppressor genes. Mutations in APC, K-ras and p53 have been commonly reported. In a previous study by our group, the tumour susceptibility gene 101 (TSG101) were found to be persistently upregulated in CRC cases. TSG101 was reported to be closely related to cancers of the breast, brain and colon, and its overexpression in human papillary thyroid carcinomas and ovarian carcinomas had previously been reported. The wingless-type MMTV integration site family member 2 (WNT2) is potentially important in the Wnt/beta-catenin pathway and upregulation of WNT2 is not uncommon in human cancers. In this study, we report the investigation for mutation(s) and expression pattern(s) of WNT2 and TSG101, in an effort to further understand their role(s) in CRC tumourigenesis. Our results revealed no mutation in these genes, despite their persistent upregulation in CRC cases studied.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  12. Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, et al.
    Hum Mol Genet, 2014 Aug 1;23(15):4161-76.
    PMID: 24608226 DOI: 10.1093/hmg/ddu106
    Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  13. Mohamed R, Lavin MF
    Biochem Biophys Res Commun, 1989 Feb 15;158(3):749-54.
    PMID: 2537634
    Anomalies in DNA replication, repair and recombination in ataxia-telangiectasia (A-T) point to a defect in structure or function of chromatin. In this study we have compared DNA-protein binding in nuclear extracts from control and A-T cells using two assay systems, filter-binding and DNA-accessibility. Interestingly, the extent of DNA protein binding over a range of protein concentration was significantly lower in A-T extracts. In addition the accessibility of the restriction enzyme Eco R1 to protein-bound plasmid was greater when A-T extracts were used. This is in keeping with the reduced binding observed in the filter-binding assay.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  14. Nailwal H, Sharma S, Mayank AK, Lal SK
    Cell Death Dis, 2015 May 21;6:e1768.
    PMID: 25996295 DOI: 10.1038/cddis.2015.131
    The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  15. Ng CH, Akhter A, Yurko N, Burgener JM, Rosonina E, Manley JL
    Nat Commun, 2015 Mar 13;6:6610.
    PMID: 25766875 DOI: 10.1038/ncomms7610
    The small ubiquitin-like modifier (SUMO) is implicated in various cellular activities, including transcriptional regulation. We previously showed that the yeast activator Gcn4 becomes sumoylated during activation, facilitating its eventual promoter eviction and transcriptional shut off. Here we show that the corepressor Tup1 is sumoylated, at two specific lysines, under various stress conditions. Mutation of these sites has no effect on Tup1 recruitment or RNAP II promoter occupancy immediately following induction. However, Tup1 levels subsequently decrease, while RNAP II and transcription increase in Tup1 mutant cells. Consistent with this, a Tup1 mutant displaying increased sumoylation led to reduced transcription. We also show that coordinated sumoylation of Gcn4 and Tup1 enhances Gcn4 promoter eviction and that multiple Tup1-interacting proteins become sumoylated after stress. Together, our studies provide evidence that coordinated sumoylation of Gcn4, Tup1 and likely other factors dampens activated transcription by stabilizing Tup1 binding and stimulating Gcn4 and RNAP II removal.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  16. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  17. Omidvar V, Abdullah SN, Ho CL, Mahmood M, Al-Shanfari AB
    Mol Biol Rep, 2012 Sep;39(9):8907-18.
    PMID: 22722992 DOI: 10.1007/s11033-012-1758-x
    Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  18. Peh SC, Gan GG, Lee LK, Eow GI
    Pathol. Int., 2008 Sep;58(9):572-9.
    PMID: 18801072 DOI: 10.1111/j.1440-1827.2008.02273.x
    Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, and it is recognized to constitute a heterogenous group of neoplasms. It can be divided into germinal center B-cell-like (GCB) and non-GCB subgroups. The aim of the present study was to evaluate the utility of immunophenotype subgrouping of DLBCL in a cohort of multi-ethnic Asian patients. A total of 84 reconfirmed de novo DLBCL were immunostained for the expression of CD10, BCL-2, BCL-6 and multiple myeloma-1. Thirty-three (39.3%) had the GCB phenotype, and the remainder (60.7%), the non-GCB phenotype. The results concur with most reports using a similar method of stratification. Forty-five patients had complete demographic and phenotype studies and 42 patients did not have rituximab treatment and had sufficient data for survival rate analysis. Similar to other studies, patients with combined low and low-intermediate International Prognostic Index score had better overall survival (P = 0.006). But patients with GCB phenotype did not have better prognosis, and BCL-2 expression was not associated with better prognosis. The expression of BCL-6 was associated with lower overall survival rate (P = 0.038). No apparent difference in overall and disease-free survival was noted between patients with GCB and non-GCB disease. BCL-6 expression by tumor cells appears to be associated with poorer prognosis.
    Matched MeSH terms: DNA-Binding Proteins/metabolism*
  19. Peh SC, Shaminie J, Tai YC, Tan J, Gan SS
    Histopathology, 2004 Nov;45(5):501-10.
    PMID: 15500654
    Follicular lymphoma is frequently associated with t(14;18)(q32;q21) translocation. This study was undertaken to determine the pattern of Bcl-2, CD10 and Bcl-6 expression in relation to t(14;18) translocation in follicular lymphoma from a cohort of a multi-ethnic Asian population.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
  20. Peh SC, Shaminie J, Poppema S, Kim LH
    Singapore Med J, 2003 Apr;44(4):185-91.
    PMID: 12952030
    Castleman's disease is an uncommon disease and the histopathogenesis is poorly understood. This study aims to investigate their clinicopathological and immunophenotypic profile.
    Matched MeSH terms: DNA-Binding Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links