Displaying publications 1 - 20 of 166 in total

Abstract:
Sort:
  1. AZRILAWANI AHMAD, NUR ANIS ZAFIRAH ZAINORDIN, NUR AMIRA JAAFAR
    MyJurnal
    A preliminary assessment of a simple and rapid electrochemical method was carried out to analyse imidacloprid (IMI) in water samples using cyclic voltammetry (CV) based on modified screen-printed gold electrode (SPGE). Self-assembled monolayer (SAM) was optimized using 11-mercaptoundecanoic acid (11-MUA) with several parameters such as scan rates, type of supporting electrolyte, and pH of the supporting electrolyte. The modified SPGE showed high suppressed current against the potential due to the formation of a monolayer on the electrode surface. Surface morphology of the electrode was analysed using Scanning Electron Microscopy (SEM) confirming that 11-MUA was present on the modified SPGE. The water samples were collected from GM Peladang, Kuala Terengganu and two locations at Universiti Malaysia Terengganu. Method detection limit was expressed as limit of detection (LOD) and limit of quantification (LOQ) for modified SPGE which were calculated at 3.784 and 12.613 mg/L in water samples, respectively. This study showed that the reduction peak current observed on the modified electrode was lower compared with oxidation peak current. Hence, gold is unsuitable for IMI detection.
    Matched MeSH terms: Electrochemical Techniques
  2. Abdi MM, Md Tahir P, Liyana R, Javahershenas R
    Molecules, 2018 Sep 26;23(10).
    PMID: 30261640 DOI: 10.3390/molecules23102470
    In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
    Matched MeSH terms: Electrochemical Techniques
  3. Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, et al.
    Anal Bioanal Chem, 2024 Jan;416(1):227-241.
    PMID: 37938411 DOI: 10.1007/s00216-023-05011-z
    This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
    Matched MeSH terms: Electrochemical Techniques/methods
  4. Abidin MS, Hashim AM, Sharifabad ME, Rahman SF, Sadoh T
    Sensors (Basel), 2011;11(3):3067-77.
    PMID: 22163786 DOI: 10.3390/s110303067
    The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, V(DS) = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications.
    Matched MeSH terms: Electrochemical Techniques/instrumentation*; Electrochemical Techniques/methods*
  5. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
    Matched MeSH terms: Electrochemical Techniques/instrumentation*
  6. Akbari E, Buntat Z, Afroozeh A, Zeinalinezhad A, Nikoukar A
    IET Nanobiotechnol, 2015 Oct;9(5):273-9.
    PMID: 26435280 DOI: 10.1049/iet-nbt.2015.0010
    Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current-voltage (I-V) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0-10(5) cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the I-V characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data.
    Matched MeSH terms: Electrochemical Techniques/instrumentation*; Electrochemical Techniques/methods
  7. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Electrochemical Techniques/methods*
  8. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
    Matched MeSH terms: Electrochemical Techniques
  9. Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S
    Chem Rec, 2016 06;16(3):1591-634.
    PMID: 27230414 DOI: 10.1002/tcr.201500279
    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience.
    Matched MeSH terms: Electrochemical Techniques
  10. Amran TS, Hashim MR, Al-Obaidi NK, Yazid H, Adnan R
    Nanoscale Res Lett, 2013 Jan 18;8(1):35.
    PMID: 23331761 DOI: 10.1186/1556-276X-8-35
    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances.
    Matched MeSH terms: Electrochemical Techniques
  11. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
    Matched MeSH terms: Electrochemical Techniques/methods*
  12. Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, et al.
    Sci Rep, 2021 Apr 12;11(1):7883.
    PMID: 33846405 DOI: 10.1038/s41598-021-86939-z
    Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
    Matched MeSH terms: Electrochemical Techniques/methods*
  13. Arul P, Huang ST, Gowthaman NSK, Govindasamy M, Jeromiyas N
    Mikrochim Acta, 2020 11 09;187(12):650.
    PMID: 33165679 DOI: 10.1007/s00604-020-04631-x
    A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.0, 7.0, and 9.0) of the reaction medium. The AT-Cu-NDCA MOF/GC electrode not only increases the electroactive surface area but also boosts the electron transfer rate reaction compared to other modified electrodes (PAT- and FL-Cu-NDCA MOFs/GCEs). Under the optimized conditions, the modified electrode (AT-Cu-NDCA MOF) exhibited a sharp oxidation peak (+ 0.46 V vs. Ag/AgCl) and higher current response for rutin. The electrode provides a wide linear range from 1 × 10-9 to 50 × 10-6 M, a low detection limit of 1.21 × 10-10 M, LOQ of 0.001 μM, and sensitivity of 0.149 μA μM-1 cm-2. The AT-Cu-NDCA MOF/GC electrode exhibited good stability (RSD = 3.52 ± 0.02% over 8 days of storage), and excellent reproducibility (RSD = 2.62 ± 0.02% (n = 3)). The modified electrode was applied to the determination of rutin in apple, orange, and lemon samples with good recoveries (99.79-99.91, 99.24-99.69, and 99.53-99.83, respectively). Graphical abstract Anisotropic structure of Cu-NDCA MOFs and its modification on glassy carbon electrode for ultra-sensitive determination of rutin in fruit samples.
    Matched MeSH terms: Electrochemical Techniques/methods*
  14. Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF, et al.
    Biosensors (Basel), 2021 Sep 18;11(9).
    PMID: 34562936 DOI: 10.3390/bios11090346
    Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
    Matched MeSH terms: Electrochemical Techniques*
  15. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Electrochemical Techniques/methods*
  16. Aziz SB, Brza MA, Hamsan EMADMH, Hadi JM, Kadir MFZ, Abdulwahid RT
    Molecules, 2020 Oct 01;25(19).
    PMID: 33019618 DOI: 10.3390/molecules25194503
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
    Matched MeSH terms: Electrochemical Techniques*
  17. Aziz SB, Brza MA, Brevik I, Hamsan MH, Abdulwahid RT, Majid SR, et al.
    Polymers (Basel), 2020 Nov 17;12(11).
    PMID: 33212879 DOI: 10.3390/polym12112718
    In this work, plasticized polymer electrolyte films consisting of chitosan, ammonium nitrate (NH4NO3) and glycerol for utilization in energy storage devices was presented. Various microscopic, spectroscopic and electrochemical techniques were used to characterize the concerned electrolyte and the electrical double-layer capacitor (EDLC) assembly. The nature of complexation between the polymer electrolyte components was examined via X-ray diffraction analysis. In the morphological study, field emission scanning electron microscopy (FESEM) was used to investigate the impact of glycerol as a plasticizer on the morphology of films. The polymer electrolyte (conducting membrane) was found to have a conductivity of 3.21 × 10-3 S/cm. It is indicated that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol amount. The mechanism of charge storing was clarified, which implies a non-Faradaic process. The voltage window of the polymer electrolyte is 2.32 V. It was proved that the ion is responsible for charge-carrying via measuring the transference number (TNM). It was also determined that the internal resistance of the EDLC assembly lay between 39 and 50 Ω. The parameters associated with the EDLC assembly are of great importance and the specific capacitance (Cspe) was determined to be almost constant over 1 to 1000 cycles with an average of 124 F/g. Other decisive parameters were found: energy density (18 Wh/kg) and power density (2700 W/kg).
    Matched MeSH terms: Electrochemical Techniques
  18. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S, et al.
    Int J Mol Sci, 2019 Oct 23;20(21).
    PMID: 31652832 DOI: 10.3390/ijms20215265
    In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (μ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.
    Matched MeSH terms: Electrochemical Techniques/methods
  19. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
    Matched MeSH terms: Electrochemical Techniques
  20. Azizi MMF, Romeli S, Razali H, Ariffin EY, Tajol Ariffin MA, Heng LY, et al.
    Sci Rep, 2022 Nov 11;12(1):19324.
    PMID: 36369187 DOI: 10.1038/s41598-022-20998-8
    More than 200 different cultivars of durian exist worldwide but Durio zibethinus or Musang King (MK) is the most premium and prized durian fruit among the recommended varieties. Early identification of this premium variety is critical to protect from non-authentic MK durian cultivars. However, the MK variety's morphological traits are nearly identical to other varieties. Currently, the identification of durian varieties is mostly performed via evaluation of leaf shape, fruit shape, aroma, taste and seed shape and this requires trained personnel for the morphology observation. To enable the rapid identification of the MK variety, PCR amplification of ten durian varieties using six gene candidates from the chloroplast genome was first performed to obtain DNA probes that were specific to the MK durian variety. PCR amplification of ten durian varieties using primers designed confirmed that the nadhA gene sequence showed an obvious difference in the MK variety from other durian varieties. The unique sequence of MK was used as a DNA probe to develop an electrochemical biosensor for the direct identification of the MK durian variety. The electrochemical biosensor was based on the hybridization response of the immobilized DNA probe with the target DNA from the MK variety and was monitored via differential pulse voltammetry technique. Under optimal conditions, the DNA electrochemical biosensor showed a low detection limit at 10% of MK genomic DNA concentration with a wide linear calibration range of 0.05-1.5 µM (R2 = 0.9891) and RSD value of 3.77% (n = 3). The results of the developed DNA biosensor provide high promise for the development of portable sensors employed in the determination of MK variety in the field.
    Matched MeSH terms: Electrochemical Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links