Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Zhang K, Ting HN, Choo YM
    Comput Methods Programs Biomed, 2024 Mar;245:108043.
    PMID: 38306944 DOI: 10.1016/j.cmpb.2024.108043
    BACKGROUND AND OBJECTIVE: Conflict may happen when more than one classifier is used to perform prediction or classification. The recognition model error leads to conflicting evidence. These conflicts can cause decision errors in a baby cry recognition and further decrease its recognition accuracy. Thus, the objective of this study is to propose a method that can effectively minimize the conflict among deep learning models and improve the accuracy of baby cry recognition.

    METHODS: An improved Dempster-Shafer evidence theory (DST) based on Wasserstein distance and Deng entropy was proposed to reduce the conflicts among the results by combining the credibility degree between evidence and the uncertainty degree of evidence. To validate the effectiveness of the proposed method, examples were analyzed, and applied in a baby cry recognition. The Whale optimization algorithm-Variational mode decomposition (WOA-VMD) was used to optimally decompose the baby cry signals. The deep features of decomposed components were extracted using the VGG16 model. Long Short-Term Memory (LSTM) models were used to classify baby cry signals. An improved DST decision method was used to obtain the decision fusion.

    RESULTS: The proposed fusion method achieves an accuracy of 90.15% in classifying three types of baby cry. Improvement between 2.90% and 4.98% was obtained over the existing DST fusion methods. Recognition accuracy was improved by between 5.79% and 11.53% when compared to the latest methods used in baby cry recognition.

    CONCLUSION: The proposed method optimally decomposes baby cry signal, effectively reduces the conflict among the results of deep learning models and improves the accuracy of baby cry recognition.

    Matched MeSH terms: Entropy
  2. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Entropy
  3. Wang S, Khan SA, Munir M, Alhajj R, Khan YA
    PLoS One, 2022;17(12):e0278236.
    PMID: 36548250 DOI: 10.1371/journal.pone.0278236
    Entropy is an alternative measure to calculate the risk, simplify the portfolios and equity risk premium. It has higher explanatory power than capital asset price model (CAPM) beta. The comparison of Entropy and CAPM beta provide in depth analysis about the explanatory power of the model that in turn help investor to make right investment decisions that minimizes risk. In this context, this study aims to compare Shannon and Rennyi Entropies with the CAPM beta for measuring the risk. Ordinary Least square approach has been utilized using a dataset of 67 enterprises registered in Pakistan Stock exchange. The comparative analysis of CAPM beta and entropy has been carried out with the R2 parameters. The result indicates that entropy has more explanatory power as compare to CAPM beta's explanatory power, and this turns out to be the best option to evaluate the risk performances. The result implies that an investor should make the best investment decision by choosing an enterprise that provide with good returns at minimum risk based on entropy technique.
    Matched MeSH terms: Entropy
  4. Uddin J, Ghazali R, Deris MM
    PLoS One, 2017;12(1):e0164803.
    PMID: 28068344 DOI: 10.1371/journal.pone.0164803
    Clustering a set of objects into homogeneous groups is a fundamental operation in data mining. Recently, many attentions have been put on categorical data clustering, where data objects are made up of non-numerical attributes. For categorical data clustering the rough set based approaches such as Maximum Dependency Attribute (MDA) and Maximum Significance Attribute (MSA) has outperformed their predecessor approaches like Bi-Clustering (BC), Total Roughness (TR) and Min-Min Roughness(MMR). This paper presents the limitations and issues of MDA and MSA techniques on special type of data sets where both techniques fails to select or faces difficulty in selecting their best clustering attribute. Therefore, this analysis motivates the need to come up with better and more generalize rough set theory approach that can cope the issues with MDA and MSA. Hence, an alternative technique named Maximum Indiscernible Attribute (MIA) for clustering categorical data using rough set indiscernible relations is proposed. The novelty of the proposed approach is that, unlike other rough set theory techniques, it uses the domain knowledge of the data set. It is based on the concept of indiscernibility relation combined with a number of clusters. To show the significance of proposed approach, the effect of number of clusters on rough accuracy, purity and entropy are described in the form of propositions. Moreover, ten different data sets from previously utilized research cases and UCI repository are used for experiments. The results produced in tabular and graphical forms shows that the proposed MIA technique provides better performance in selecting the clustering attribute in terms of purity, entropy, iterations, time, accuracy and rough accuracy.
    Matched MeSH terms: Entropy
  5. Tayyab S, Zaroog MS, Feroz SR, Mohamad SB, Malek SN
    Int J Pharm, 2015 Aug 1;491(1-2):352-8.
    PMID: 26142245 DOI: 10.1016/j.ijpharm.2015.06.042
    The interaction of tranilast (TRN), an antiallergic drug with the main drug transporter in human circulation, human serum albumin (HSA) was studied using isothermal titration calorimetry (ITC), fluorescence spectroscopy and in silico docking methods. ITC data revealed the binding constant and stoichiometry of binding as (3.21 ± 0.23) × 10(6)M(-1) and 0.80 ± 0.08, respectively, at 25°C. The values of the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°) for the interaction were found as -25.2 ± 5.1 kJ mol(-1) and 46.9 ± 5.4 J mol(-1)K(-1), respectively. Both thermodynamic data and modeling results suggested the involvement of hydrogen bonding, hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of TRN-HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Competitive drug displacement results as well as modeling data concluded the preferred binding site of TRN as Sudlow's site I on HSA.
    Matched MeSH terms: Entropy
  6. Tamjidy M, Baharudin BTHT, Paslar S, Matori KA, Sulaiman S, Fadaeifard F
    Materials (Basel), 2017 May 15;10(5).
    PMID: 28772893 DOI: 10.3390/ma10050533
    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
    Matched MeSH terms: Entropy
  7. Suradi SH, Abdullah KA
    Curr Med Imaging, 2021 Jan 26.
    PMID: 33504312 DOI: 10.2174/1573405617666210127101101
    BACKGROUND: Digital mammograms with appropriate image enhancement techniques will improve breast cancer detection, and thus increase the survival rates. The objectives of this study were to systematically review and compare various image enhancement techniques in digital mammograms for breast cancer detection.

    METHODS: A literature search was conducted with the use of three online databases namely, Web of Science, Scopus, and ScienceDirect. Developed keywords strategy was used to include only the relevant articles. A Population Intervention Comparison Outcomes (PICO) strategy was used to develop the inclusion and exclusion criteria. Image quality was analyzed quantitatively based on peak signal-noise-ratio (PSNR), Mean Squared Error (MSE), Absolute Mean Brightness Error (AMBE), Entropy, and Contrast Improvement Index (CII) values.

    RESULTS: Nine studies with four types of image enhancement techniques were included in this study. Two studies used histogram-based, three studies used frequency-based, one study used fuzzy-based and three studies used filter-based. All studies reported PSNR values whilst only four studies reported MSE, AMBE, Entropy and CII values. Filter-based was the highest PSNR values of 78.93, among other types. For MSE, AMBE, Entropy, and CII values, the highest were frequency-based (7.79), fuzzy-based (93.76), filter-based (7.92), and frequency-based (6.54) respectively.

    CONCLUSION: In summary, image quality for each image enhancement technique is varied, especially for breast cancer detection. In this study, the frequency-based of Fast Discrete Curvelet Transform (FDCT) via the UnequiSpaced Fast Fourier Transform (USFFT) shows the most superior among other image enhancement techniques.

    Matched MeSH terms: Entropy
  8. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
    Matched MeSH terms: Entropy
  9. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:241-51.
    PMID: 26897481 DOI: 10.1016/j.compbiomed.2016.01.029
    Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.
    Matched MeSH terms: Entropy
  10. Soundirarajan M, Pakniyat N, Sim S, Nathan V, Namazi H
    Technol Health Care, 2021;29(1):99-109.
    PMID: 32568131 DOI: 10.3233/THC-192085
    BACKGROUND: Human facial muscles react differently to different visual stimuli. It is known that the human brain controls and regulates the activity of the muscles.

    OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain.

    METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content).

    RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals.

    CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.

    Matched MeSH terms: Entropy
  11. Shi Y, Huang L, Soh AK, Weng GJ, Liu S, Redfern SAT
    Sci Rep, 2017 09 11;7(1):11111.
    PMID: 28894256 DOI: 10.1038/s41598-017-11633-y
    Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆Smax) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆Smax = 300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The ∆Smax in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V cr-2.2, owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆Smax in relaxor and normal ferroelectrics scales as ∆Smax ~ V cr-0.37, which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.
    Matched MeSH terms: Entropy
  12. Sharma M, Agarwal S, Acharya UR
    Comput Biol Med, 2018 09 01;100:100-113.
    PMID: 29990643 DOI: 10.1016/j.compbiomed.2018.06.011
    Obstructive sleep apnea (OSA) is a sleep disorder caused due to interruption of breathing resulting in insufficient oxygen to the human body and brain. If the OSA is detected and treated at an early stage the possibility of severe health impairment can be mitigated. Therefore, an accurate automated OSA detection system is indispensable. Generally, OSA based computer-aided diagnosis (CAD) system employs multi-channel, multi-signal physiological signals. However, there is a great need for single-channel bio-signal based low-power, a portable OSA-CAD system which can be used at home. In this study, we propose single-channel electrocardiogram (ECG) based OSA-CAD system using a new class of optimal biorthogonal antisymmetric wavelet filter bank (BAWFB). In this class of filter bank, all filters are of even length. The filter bank design problem is transformed into a constrained optimization problem wherein the objective is to minimize either frequency-spread for the given time-spread or time-spread for the given frequency-spread. The optimization problem is formulated as a semi-definite programming (SDP) problem. In the SDP problem, the objective function (time-spread or frequency-spread), constraints of perfect reconstruction (PR) and zero moment (ZM) are incorporated in their time domain matrix formulations. The global solution for SDP is obtained using interior point algorithm. The newly designed BAWFB is used for the classification of OSA using ECG signals taken from the physionet's Apnea-ECG database. The ECG segments of 1 min duration are decomposed into six wavelet subbands (WSBs) by employing the proposed BAWFB. Then, the fuzzy entropy (FE) and log-energy (LE) features are computed from all six WSBs. The FE and LE features are classified into normal and OSA groups using least squares support vector machine (LS-SVM) with 35-fold cross-validation strategy. The proposed OSA detection model achieved the average classification accuracy, sensitivity, specificity and F-score of 90.11%, 90.87% 88.88% and 0.92, respectively. The performance of the model is found to be better than the existing works in detecting OSA using the same database. Thus, the proposed automated OSA detection system is accurate, cost-effective and ready to be tested with a huge database.
    Matched MeSH terms: Entropy
  13. Sharma M, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:341-356.
    PMID: 30049414 DOI: 10.1016/j.compbiomed.2018.07.005
    Myocardial infarction (MI), also referred to as heart attack, occurs when there is an interruption of blood flow to parts of the heart, due to the acute rupture of atherosclerotic plaque, which leads to damage of heart muscle. The heart muscle damage produces changes in the recorded surface electrocardiogram (ECG). The identification of MI by visual inspection of the ECG requires expert interpretation, and is difficult as the ECG signal changes associated with MI can be short in duration and low in magnitude. Hence, errors in diagnosis can lead to delay the initiation of appropriate medical treatment. To lessen the burden on doctors, an automated ECG based system can be installed in hospitals to help identify MI changes on ECG. In the proposed study, we develop a single-channel single lead ECG based MI diagnostic system validated using noisy and clean datasets. The raw ECG signals are taken from the Physikalisch-Technische Bundesanstalt database. We design a novel two-band optimal biorthogonal filter bank (FB) for analysis of the ECG signals. We present a method to design a novel class of two-band optimal biorthogonal FB in which not only the product filter but the analysis lowpass filter is also a halfband filter. The filter design problem has been composed as a constrained convex optimization problem in which the objective function is a convex combination of multiple quadratic functions and the regularity and perfect reconstruction conditions are imposed in the form linear equalities. ECG signals are decomposed into six subbands (SBs) using the newly designed wavelet FB. Following to this, discriminating features namely, fuzzy entropy (FE), signal-fractal-dimensions (SFD), and renyi entropy (RE) are computed from all the six SBs. The features are fed to the k-nearest neighbor (KNN). The proposed system yields an accuracy of 99.62% for the noisy dataset and an accuracy of 99.74% for the clean dataset, using 10-fold cross validation (CV) technique. Our MI identification system is robust and highly accurate. It can thus be installed in clinics for detecting MI.
    Matched MeSH terms: Entropy
  14. Ravanfar SA, Razak HA, Ismail Z, Monajemi H
    Sensors (Basel), 2015;15(9):22750-75.
    PMID: 26371005 DOI: 10.3390/s150922750
    This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE). The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT) components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.
    Matched MeSH terms: Entropy
  15. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AK, Radu S, et al.
    N Biotechnol, 2011 Oct;28(6):738-45.
    PMID: 21238617 DOI: 10.1016/j.nbt.2011.01.002
    Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
    Matched MeSH terms: Entropy
  16. Nor Hasliza Mat Desa, Maznah Mat Kasim, Abdul Aziz Jemain
    Sains Malaysiana, 2015;44:239-247.
    The issue of age difference in hospital admission should be given special attention since it affects the structure of hospital care and treatments. Patients of different age groups should be given different priority in service provision. Due to crucial time and limited resources, healthcare managers need to make wise decisions in identifying priorities in age of admission. This paper aimed to propose a construction of a daily composite hospital admission index (CHAI) as an indicator that captures relevant information about the overall performance of hospital admission over time. It involves five different age groups of total patients admitted to seven major public hospitals in the Klang Valley, Malaysia for respiratory and cardiovascular diseases for a period of three years, 2008 - 2010. The criteria weights were predetermined by aggregating the subjective weight based on rank ordered centroid (ROC) method and objective weight based on entropy - kernel method. The highest and lowest scores of CHAI were marked, while the groups of patients were prioritized according to the criteria weight ranking orders.
    Matched MeSH terms: Entropy
  17. Nazeri M, Jusoff K, Madani N, Mahmud AR, Bahman AR, Kumar L
    PLoS One, 2012;7(10):e48104.
    PMID: 23110182 DOI: 10.1371/journal.pone.0048104
    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.
    Matched MeSH terms: Entropy
  18. Namazi H, Akrami A, Nazeri S, Kulish VV
    Biomed Res Int, 2016;2016:5469587.
    PMID: 27699169
    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.
    Matched MeSH terms: Entropy
  19. Mustafa S, Iqbal MW, Rana TA, Jaffar A, Shiraz M, Arif M, et al.
    Comput Intell Neurosci, 2022;2022:4348235.
    PMID: 35909861 DOI: 10.1155/2022/4348235
    Malignant melanoma is considered one of the deadliest skin diseases if ignored without treatment. The mortality rate caused by melanoma is more than two times that of other skin malignancy diseases. These facts encourage computer scientists to find automated methods to discover skin cancers. Nowadays, the analysis of skin images is widely used by assistant physicians to discover the first stage of the disease automatically. One of the challenges the computer science researchers faced when developing such a system is the un-clarity of the existing images, such as noise like shadows, low contrast, hairs, and specular reflections, which complicates detecting the skin lesions in that images. This paper proposes the solution to the problem mentioned earlier using the active contour method. Still, seed selection in the dynamic contour method has the main drawback of where it should start the segmentation process. This paper uses Gaussian filter-based maximum entropy and morphological processing methods to find automatic seed points for active contour. By incorporating this, it can segment the lesion from dermoscopic images automatically. Our proposed methodology tested quantitative and qualitative measures on standard dataset dermis and used to test the proposed method's reliability which shows encouraging results.
    Matched MeSH terms: Entropy
  20. Mujib Kamal S, Babini MH, Krejcar O, Namazi H
    Front Physiol, 2020;11:602027.
    PMID: 33324242 DOI: 10.3389/fphys.2020.602027
    Walking is an everyday activity in our daily life. Because walking affects heart rate variability, in this research, for the first time, we analyzed the coupling among the alterations of the complexity of walking paths and heart rate. We benefited from the fractal theory and sample entropy to evaluate the influence of the complexity of paths on the complexity of heart rate variability (HRV) during walking. We calculated the fractal exponent and sample entropy of the R-R time series for nine participants who walked on four paths with various complexities. The findings showed a strong coupling among the alterations of fractal dimension (an indicator of complexity) of HRV and the walking paths. Besides, the result of the analysis of sample entropy also verified the obtained results from the fractal analysis. In further studies, we can analyze the coupling among the alterations of the complexities of other physiological signals and walking paths.
    Matched MeSH terms: Entropy
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links