Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Hiu JJ, Fung JKY, Tan HS, Yap MKK
    Sci Rep, 2023 Jul 28;13(1):12271.
    PMID: 37507457 DOI: 10.1038/s41598-023-39222-2
    Approximate 70% of cobra venom is composed of cytotoxin (CTX), which is responsible for the dermonecrotic symptoms of cobra envenomation. However, CTX is generally low in immunogenicity, and the antivenom is ineffective in attenuating its in vivo toxicity. Furthermore, little is known about its epitope properties for empirical antivenom therapy. This study aimed to determine the epitope sequences of CTX using the immunoinformatic analyses and epitope-omics profiling. A conserved CTX was used in this study to determine its T-cell and B-cell epitope sequences using immunoinformatic tools and molecular docking simulation with different Human Leukocyte Antigens (HLAs). The potential T-cell and B-cell epitopes were 'KLVPLFY,' 'CPAGKNLCY,' 'MFMVSTPTK,' and 'DVCPKNSLL.' Molecular docking simulations disclosed that the HLA-B62 supertype exhibited the greatest binding affinity towards cobra venom cytotoxin. The namely L7, G18, K19, N20, M25, K33, V43, C44, K46, N47, and S48 of CTX exhibited prominent intermolecular interactions with HLA-B62. The multi-enzymatic-limited-digestion/liquid chromatography-mass spectrometry (MELD/LC-MS) also revealed three potential epitope sequences as 'LVPLFYK,' 'MFMVS,' and 'TVPVKR'. From different epitope mapping approaches, we concluded four potential epitope sites of CTX as 'KLVPLFYK', 'AGKNL', 'MFMVSTPKVPV' and 'DVCPKNSLL'. Site-directed mutagenesis of these epitopes confirmed their locations at the functional loops of CTX. These epitope sequences are crucial to CTX's structural folding and cytotoxicity. The results concluded the epitopes that resided within the functional loops constituted potential targets to fabricate synthetic epitopes for CTX-targeted antivenom production.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  2. Ramanathan B, Poh CL, Kirk K, McBride WJ, Aaskov J, Grollo L
    PLoS One, 2016;11(5):e0155900.
    PMID: 27223692 DOI: 10.1371/journal.pone.0155900
    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology*; Epitopes, B-Lymphocyte/chemistry
  3. Suleman M, Khan TA, Ejaz H, Maroof S, Alshammari A, Albekairi NA, et al.
    Microb Pathog, 2024 Apr;189:106572.
    PMID: 38354987 DOI: 10.1016/j.micpath.2024.106572
    The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  4. Salleh MZ, Derrick JP, Deris ZZ
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299045 DOI: 10.3390/ijms22147425
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology
  5. Ezzemani W, Kettani A, Sappati S, Kondaka K, El Ossmani H, Tsukiyama-Kohara K, et al.
    J Biomol Struct Dyn, 2023 Jul;41(11):4917-4938.
    PMID: 35549819 DOI: 10.1080/07391102.2022.2075468
    The genome feature of SARS-CoV-2 leads the virus to mutate and creates new variants of concern. Tackling viral mutations is also an important challenge for the development of a new vaccine. Accordingly, in the present study, we undertook to identify B- and T-cell epitopes with immunogenic potential for eliciting responses to SARS-CoV-2, using computational approaches and its tailoring to coronavirus variants. A total of 47 novel epitopes were identified as immunogenic triggering immune responses and no toxic after investigation with in silico tools. Furthermore, we found these peptide vaccine candidates showed a significant binding affinity for MHC I and MHC II alleles in molecular docking investigations. We consider them to be promising targets for developing peptide-based vaccines against SARS-CoV-2. Subsequently, we designed two efficient multi-epitopes vaccines against the SARS-CoV-2, the first one based on potent MHC class I and class II T-cell epitopes of S (FPNITNLCPF-NYNYLYRLFR-MFVFLVLLPLVSSQC), M (MWLSYFIASF-GLMWLSYFIASFRLF), E (LTALRLCAY-LLFLAFVVFLLVTLA), and N (SPRWYFYYL-AQFAPSASAFFGMSR). The second candidate is the result of the tailoring of the first designed vaccine according to three classes of SARS-CoV-2 variants. Molecular docking showed that the protein-protein binding interactions between the vaccines construct and TLR2-TLR4 immune receptors are stable complexes. These findings confirmed that the final multi-epitope vaccine could be easily adapted to new viral variants. Our study offers a shortlist of promising epitopes that can accelerate the development of an effective and safe vaccine against the virus and its adaptation to new variants.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  6. Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, et al.
    Pathog Glob Health, 2023 Mar;117(2):134-151.
    PMID: 35550001 DOI: 10.1080/20477724.2022.2072456
    The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  7. Masir N, Campbell LJ, Jones M, Mason DY
    Pathology, 2010 Apr;42(3):212-6.
    PMID: 20350212 DOI: 10.3109/00313021003631296
    The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics*; Epitopes, B-Lymphocyte/immunology
  8. Fazal F, Anwar T, Waheed Y, Parvaiz F
    Trop Biomed, 2020 Sep 01;37(3):566-577.
    PMID: 33612772 DOI: 10.47665/tb.37.3.566
    This study is focused towards developing a global consensus sequence of nonstructural protein 2 (NSP2), a protease of Chikungunya Virus (CHIKV) and predict immunogenic promiscuous T-cell epitopes based on various bioinformatics tools. To date, no epitope data is available for the Chikungunya virus in the IEDB database. In this study, 100 available nucleotide sequences of NSP2-CHIKV belonging to different strains were downloaded from the National Centre for Biotechnology Information (NCBI) database. The nucleotide sequences were subjected to translated sequencing using the EXPASY tool followed by protein alignment using the CLC workbench and a global consensus sequence for the respective protein was developed. IEDB tool was used to predict HLA-I and HLA-II binding promiscuous epitopes from the consensus sequence of NSP2-CHIKV. Thirty-four B-cell based epitopes are predicted and the promiscuous epitope is VVDTTGSTKPDPGD at position 341-354. Twenty-six MHC-I short peptide epitopes are predicted to bind with HLA-A. The promiscuous epitopes predicted to bind with HLA-A*01:01 are VTAIVSSLHY, SLSESATMVY, FSKPLVYY, QPTDHVVGEY at positions 317-326, 84-93, 535-544 and 15-24 with percentile ranks 0.17, 0.39, 0.51 and 0.81, respectively. Twenty-four MHC-II short peptide epitopes are predicted for HLA-DRB. The promiscuous epitope predicted to bind with HLA-DRB*01:01 is VVGEYLVLSPQTVLRS from 20-35 with a lowest percentile rank of 0.01. These predicted epitopes can be effective targets towards development of vaccine against CHIKV. Epitopes predicted in this study displayed good binding affinity, antigenicity and promiscuity for the HLA classes. These predicted epitopes can prove to be translationally important towards the development of CHIKV.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  9. Tan JH, Cheong FW, Lau YL, Fong MY
    Trop Biomed, 2023 Mar 01;40(1):37-44.
    PMID: 37356002 DOI: 10.47665/tb.40.1.004
    Circumsporozoite protein (CSP) central repeat region is one of the main target regions of the RTS,S/AS01 vaccine for falciparum infection as it consists of immunodominant B cell epitopes. However, there is a lack of study for P. knowlesi CSP central repeat region. This study aims to characterise the CSP repeat motifs of P. knowlesi isolates in Peninsular Malaysia. CSP repeat motifs of 64 P. knowlesi isolates were identified using Rapid Automatic Detection and Alignment of Repeats (RADAR). Antigenicity of the repeat motifs and linear B cell epitopes were predicted using VaxiJen 2.0, BepiPred-2.0 and BCPred, respectively. A total of 35 dominant repeat motifs were identified. The repeat motif "AGQPQAQGDGANAGQPQAQGDGAN" has the highest repeat frequency (n=15) and antigenicity index of 1.7986. All the repeat regions were predicted as B cell epitopes. In silico approaches revealed that all repeat motifs were antigenic and consisted of B cell epitopes which could be designed as knowlesi malaria vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  10. Ng AWR, Tan PJ, Hoo WPY, Liew DS, Teo MYM, Siak PY, et al.
    PeerJ, 2018;6:e5056.
    PMID: 30042874 DOI: 10.7717/peerj.5056
    Background: Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions.

    Methods: In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA.

    Results: In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls.

    Discussion: In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.

    Matched MeSH terms: Epitopes, B-Lymphocyte
  11. Hoo WPY, Siak PY, In LLA
    Methods Mol Biol, 2020;2131:213-228.
    PMID: 32162256 DOI: 10.1007/978-1-0716-0389-5_10
    Discovery of tumor antigenic epitopes is important for cancer vaccine development. Such epitopes can be designed and modified to become more antigenic and immunogenic in order to overcome immunosuppression towards the native tumor antigen. In silico-guided modification of epitope sequences allows predictive discrimination of those that may be potentially immunogenic. Therefore, only candidates predicted with high antigenicity will be selected, constructed, and tested in the lab. Here, we described the employment of in silico tools using a multiparametric approach to assess both potential T-cell epitopes (MHC class I/II binding) and B-cell epitopes (hydrophilicity, surface accessibility, antigenicity, and linear epitope). A scoring and ranking system based on these parameters was developed to shortlist potential mimotope candidates for further development as peptide cancer vaccines.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology
  12. Druka A, Burns T, Zhang S, Hull R
    J Gen Virol, 1996 Aug;77 ( Pt 8):1975-83.
    PMID: 8760450
    Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology
  13. Shahab M, Iqbal MW, Ahmad A, Alshabrmi FM, Wei DQ, Khan A, et al.
    Comput Biol Med, 2024 Mar;170:108056.
    PMID: 38301512 DOI: 10.1016/j.compbiomed.2024.108056
    The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
    Matched MeSH terms: Epitopes, B-Lymphocyte/chemistry
  14. Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126678.
    PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678
    Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  15. Nguyen Thi le T, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM, et al.
    Tuberculosis (Edinb), 2014 Sep;94(5):475-81.
    PMID: 25034135 DOI: 10.1016/j.tube.2014.06.004
    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics*
  16. Mohamud R, Azlan M, Yero D, Alvarez N, Sarmiento ME, Acosta A, et al.
    BMC Immunol, 2013;14 Suppl 1:S5.
    PMID: 23458635 DOI: 10.1186/1471-2172-14-S1-S5
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4⁺ and CD8⁺ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.
    Matched MeSH terms: Epitopes, B-Lymphocyte/biosynthesis; Epitopes, B-Lymphocyte/immunology*
  17. Panchanathan V, Naidu BR, Devi S, Di Pasquale A, Mason T, Pang T
    Immunol Lett, 1998 Jun;62(2):105-9.
    PMID: 9698106
    A series of 122, 9-mer overlapping peptides based on the sequence of the Salmonella typhi GroEL gene was synthesized on the surfaces of polyethylene pins and screened with monoclonal antibody to GroEL and with human sera from patients with typhoid fever and normal healthy blood donors. Three immunogenic epitopes corresponding to peptides EGQDRGYSY, YSYNKETGE and GKGTEEKEK were identified upon screening with the human sera. In addition, screening of the peptides with a monoclonal antibody to GroEL detected binding to a third peptide, KGGKGTEEK, which contains a common overlapping sequence to peptide GKGTEEKEK. Identification and definition of these epitopes will be important in delineating the biological and immunological functions of this protein and in designing better diagnostic tests and vaccines.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology*
  18. Lim HX, Lim J, Poh CL
    Med Microbiol Immunol, 2021 Feb;210(1):1-11.
    PMID: 33515283 DOI: 10.1007/s00430-021-00700-x
    Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics; Epitopes, B-Lymphocyte/immunology*
  19. Tan JH, Ding HX, Fong MY, Lau YL
    Infect Genet Evol, 2023 Oct;114:105490.
    PMID: 37595939 DOI: 10.1016/j.meegid.2023.105490
    Plasmodium knowlesi is the leading cause of malaria in Malaysia. Serine Repeat Antigens (SERAs) have an essential role in the parasite life cycle. However, genetic characterization on P. knowlesi SERA3 Ag2 (PkSERA3 Ag2) is lacking. In the present study, nucleotide diversity, natural selection, and haplotypes of PkSERA3 Ag2 in clinical samples from Peninsular Malaysia and Malaysian Borneo were investigated. A total of 50 P. knowlesi clinical samples were collected from Peninsular Malaysia and Malaysian Borneo. The PkSERA3 Ag2 gene was amplified using PCR, and subsequently cloned and sequenced. Genetic diversity, haplotype, natural selection as well as genetic structure and differentiation of PkSERA3 Ag2 were analysed. In addition, in silico analyses were performed to identify repeat motifs, B-cell epitopes, and antigenicity indices of the protein. Analysis of 114 PkSERA3 Ag2 sequences revealed high nucleotide diversity of the gene in Malaysia. A codon-based Z-test indicated that the gene underwent purifying selection. Haplotype and population structure analyses identified two distinct PkSERA3 Ag2 clusters (K = 2, ΔK = 721.14) but no clear genetic distinction between PkSERA3 Ag2 from Peninsular Malaysia and Malaysian Borneo. FST index indicated moderate differentiation of the gene. In silico analyses revealed unique repeat motifs among PkSERA3 Ag2 isolates. Moreover, the amino acid sequence of PkSERA3 Ag2 exhibited potential B-cell epitopes and possessed high antigenicity indices. These findings enhance the understanding of PkSERA3 Ag2 gene as well as its antigenic properties. Further validation is necessary to ascertain the utility of PkSERA3 Ag2 as a serological marker for P. knowlesi infection.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics; Epitopes, B-Lymphocyte/metabolism
  20. Campos DMO, Silva MKD, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN
    Comput Biol Chem, 2022 Dec;101:107754.
    PMID: 36037724 DOI: 10.1016/j.compbiolchem.2022.107754
    The current COVID-19 pandemic, an infectious disease caused by the novel coronavirus (SARS-CoV-2), poses a threat to global health because of its high rate of spread and death. Currently, vaccination is the most effective method to prevent the spread of this disease. In the present study, we developed a novel multiepitope vaccine against SARS-CoV-2 containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1) variants. To this end, we performed a robust immunoinformatics approach based on multiple epitopes of the four structural proteins of SARS-CoV-2 (S, M, N, and E) from 475 SARS-CoV-2 genomes sequenced from the regions with the highest number of registered cases, namely the United States, India, Brazil, France, Germany, and the United Kingdom. To investigate the best immunogenic epitopes for linear B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL), we evaluated antigenicity, allergenicity, conservation, immunogenicity, toxicity, human population coverage, IFN-inducing, post-translational modifications, and physicochemical properties. The tertiary structure of a vaccine prototype was predicted, refined, and validated. Through docking experiments, we evaluated its molecular coupling to the key immune receptor Toll-Like Receptor 3 (TLR3). To improve the quality of docking calculations, quantum mechanics/molecular mechanics calculations (QM/MM) were used, with the QM part of the simulations performed using the density functional theory formalism (DFT). Cloning and codon optimization were performed for the successful expression of the vaccine in E. coli. Finally, we investigated the immunogenic properties and immune response of our SARS-CoV-2 multiepitope vaccine. The results of the simulations show that administering our prototype three times significantly increases the antibody response and decreases the amount of antigens. The proposed vaccine candidate should therefore be tested in clinical trials for its efficacy in neutralizing SARS-CoV-2.
    Matched MeSH terms: Epitopes, B-Lymphocyte
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links